
ODFW PROGRESS REPORT Series

Oregon Department of Fish and Wildlife

Juvenile Salmonid Monitoring in Coastal Oregon and Lower Columbia Streams, 2022 Field Season

Annual Monitoring Report No. OPSW-ODFW-2023-1

Oregon Department of Fish and Wildlife prohibits discrimination in all its programs and services on the basis of race, color, national origin, age, sex, or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 4034 Fairview Industrial Drive SE, Salem, OR 97302; (503)947-6000.
This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request

ANNUAL PROGRESS REPORT FISH RESEARCH PROJECT OREGON

PROJECT TITLE: Juvenile Salmonid Monitoring in Coastal Oregon and Lower Columbia Streams, 2022 Field Season

PROJECT NUMBER: OPSW-ODFW-2023-1

PROJECT PERIOD: 2022

Prepared by: Ronald J. Constable, Jr. and Erik Suring

Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem, OR 97302

This project was funded by NOAA Pacific Coastal Salmon Recovery Fund (OWEB Contract #216-904 and #218-904), the State of Oregon Lottery Fund, and the State of Oregon General Fund.

CONTENTS

SUMMARY	. ხ
BACKGROUND AND METHODS	. 7
RESULTS	13
2022 Survey Effort and Resurveys	13
Coho Salmon Distribution and Abundance Trends	15
Steelhead Distribution and Abundance Trends	24
Effects of Pool Depth on Survey Effort and Snorkel Counts	28
ACKNOWLEDGEMENTS2	29
REFERENCES	30
APPENDIX 1 COHO SALMON METRICS	
APPENDIX 2 STEELHEAD METRICS	39
FIGURES	
Figure 1. Coho Salmon ESUs and strata in Western Oregon. The table lists the length of coho salmon rearing distribution for 1 st -3 rd order streams for each area	1 1
Figure 2. Steelhead DPSs and strata in Western Oregon. The table lists the length of steelhead rearing distribution for 1 st -3 rd order streams for each area	
Figure 3. The relationship of Coho Salmon parr and steelhead (≥90mm in fork length) parr counts from surveys and resurveys of the same sampling sites for 2022 (top panels, n = 27) and for all previous years (bottom panels, n = 591 for Coho Salmon and n= 537 for steelhead, respectively). Data are log transformed to satisfy regression assumptions	14
Figure 4. Three-year (brood group) trends of Coho Salmon parr abundance estimates in the three western Oregon Coho ESUs, based on snorkel surveys in 1 st -3 rd order streams for the years 1998-2021. 2022 is shown as an individual year. Gray bars and error bars show the abundance estimate with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05. Note the differences in Y-axis scales among panels.	17
Figure 5. Three-year (brood group) trends of Coho Salmon parr site occupancy in the three western Oregon Coho ESUs based on snorkel surveys in 1 st -3 rd order streams for the years 1998-2021. 2022 is shown as an individual year. Gray bars and error bars show the percent of sites occupied with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05.	18

Figure 6. Three-year (brood group) trends of Coho Salmon parr abundance estimates in the four strata of the Oregon Coast Coho ESU, based on snorkel surveys in 1 st -3 rd order streams for the years 1998-2021. 2022 is shown as an individual year. Gray bars and error bars show the abundance estimate with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05	19
Figure 7. Three-year (brood group) trends of Coho Salmon parr site occupancy in the four strata of the Oregon Coast Coho ESU, based on snorkel surveys in 1 st -3 rd order streams for the years 1998-2021. 2022 is shown as an individual year. Gray bars and error bars show the percent of sites occupied with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05	20
Figure 8. A Beverton-Holt model showing the relationship between the abundance of Coho Salmon parr recruits and female spawners in the strata of the Oregon Coast Coho ESU for brood years 1998-2021. Parr abundance is from uncalibrated snorkel surveys in 1st-3rd order streams. Female spawner abundance is from spawning ground surveys.	21
Figure 9. The relationship between the abundance of Coho Salmon female spawners and the number of parr recruits per female spawner in the strata of the Oregon Coast Coho ESU for brood years 1998-2021. Parr abundance is from un-calibrated snorkel surveys in 1 st -3 rd order streams. Spawner abundance is from spawning ground surveys.	21
Figure 10. The abundance of Coho Salmon female spawners (gray bars) and the number of parr recruits per female spawner (black dots and line) over time in the Oregon Coast Coho ESU. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Spawner abundance is from spawning ground surveys	22
Figure 11. A Beverton-Holt model showing the relationship between the abundance of Coho Salmon parr recruits and female spawners in the Lower Columbia River ESU for brood years 2005-2021. Parr abundance is from un-calibrated snorkel surveys in 1 st -3 rd order streams. Female spawner abundance is from spawning ground surveys	22
Figure 12. The relationship between the abundance of Coho Salmon female spawners and the number of parr recruits per female spawner in the Lower Columbia River ESU for brood years 2005-2021. Parr abundance is from uncalibrated snorkel surveys in 1st-3rd order streams. Spawner abundance is from spawning ground surveys	23
Figure 13. The abundance of Coho Salmon female spawners (gray bars) and the number of parr recruits per female spawner (black dots and line) over time in the Lower Columbia River ESU. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Spawner abundance is from spawning ground surveys.	23

Figure 14. Four-year (brood group) trends of juvenile steelhead (≥90cm in fork length) abundance estimates in the four western Oregon DPSs, based on snorkel surveys in 1 st -3 rd order streams in years 2002-2021.2022 is shown as an individual year. Gray and error bars show the abundance estimate with the 95% CI for the brood group. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05. Note differences in Y-axis scales among panels	26
Figure 15. Four-year (brood group) trends of juvenile steelhead (≥90cm in fork length) site occupancy in four western Oregon DPS, based on snorkel surveys in 1 st -3 rd order streams for years 2002-2021. 2022 is shown as an individual year. Gray bars and error bars show the percent of sites occupied with the 95%CI for each brood group. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05	27

TABLES

Table 1. Survey effort goals and status of sites for 2022	13
Table 2. Distribution and abundance estimates of Coho Salmon parr in the four strata of the Oregon Coast Coho ESU and in the LCR and SONCC. Estimates are from snorkel surveys in 1 st -3 rd order streams from 2022	14
Table 3. Distribution and density estimates for juvenile steelhead (≥90cm in fork length) in eight strata of Western Oregon Steelhead DPS, based on snorkel surveys in 1 st -3 rd order streams for 2022	25
Table 4. Comparison of estimates of Coho Salmon abundance in pools using a maximum depth of ≥20cm and in pools using a maximum depth of ≥40cm	28
Table 5. Comparison of estimates of steelhead abundance in pools using a maximum depth of ≥20 and in pools using a maximum depth of ≥40cm	28
Table 6. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Oregon portion of the Southern Oregon Northern California Coho ESU. Data are from un-calibrated snorkel surveys in 1 st -3 rd order streams. The 95% confidence interval is expressed as a percent of the	
estimate	32
Table 7. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1 st -3 rd order streams. The 95% confidence interval is expressed as a percent of the estimate.	33
Table 8. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the North Coast Stratum of the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.	34
Table 9. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Mid Coast Stratum of the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1 st -3 rd order streams. The 95% confidence interval is expressed as a percent of the estimate	35
Table 10. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Mid-South Coast Stratum of the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate	
Table 11. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Umpqua Stratum of the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1 st -3 rd order streams. The 95% confidence interval is expressed as a percent of the estimate.	37
Table 12. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Oregon portion of the Lower Columbia River Coho ESU. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.	38

Table 13. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon portion of the Klamath Mountains Province Steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate	39
Table 14. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Rogue Stratum of the Klamath Mountains Province steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is express as a percentage of the estimate	40
Table 15. Estimated metrics and associated 95% confidence intervals for steelhead parr in the South Coast Stratum of the Klamath Mountains Province steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is express as a percentage of the estimate	41
Table 16. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon Coast Steelhead DPS. Data are from un-calibrated snorkel surveys in 1 st -3 rd order streams. The 95% confidence interval is expressed as a percent of the estimate	42
Table 17. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon portion of the Lower Columbia River Steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate	43
Table 18. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon portion of the Southwest Washington Steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate	44

SUMMARY

This report analyzes juvenile Coho Salmon (*Oncorhynchus kisutch*) and steelhead (*O. mykiss*) data from snorkel surveys in western Oregon. Trends in site occupancy (the percent of surveys where observations were made) and abundance (snorkel count) of these species are presented in their respective Evolutionarily Significant Units (ESUs) and Distinct Population Segments (DPSs). Surveys have been conducted annually since 1998 for Coho Salmon and since 2002 for steelhead. For previous reports see: https://nrimp.dfw.state.or.us/DataClearinghouse/default.aspx?p=149.

Coho Salmon

Southern Oregon Northern California ESU: In 2022 abundance was 107,170 parr and site occupancy was 48%. Abundance has declined from estimates averaging 236,000 parr during 2001-2009 to estimates averaging 95,699 parr during 2014-2022. Site occupancy has been more stable, although the metric was higher in 2007-2009 than in recent years. Site occupancy improved in 2022 from the record low estimate observed in 2021.

Oregon Coast Coho ESU: In 2022 abundance was 4.87 million parr, the second highest estimate in the project record, and site occupancy was 88%, tying the record high from 2011. Abundance has ranged between 2.9 and 4.9 million parr after increasing from lows averaging 910,000 in 1998-1999. Abundance was higher in 2007-2015 than 2016-2022. Site occupancy has averaged 80% since 2000, after increasing from low estimates in 1998-1999. Spawner:parr recruit curves in the were asymptotic at current spawner abundances and parr/spawner rates suggested freshwater productivity was regulated by compensatory density dependence at early life stages.

Lower Columbia River ESU: In 2022 abundance was 147,215 parr and site occupancy was 56%. Both metrics improved in 2020-2022 compared to 2017-2019. Spawner:parr recruit curves did not suggest freshwater productivity regulation by compensatory density dependence at early life stages in the Lower Columbia River.

Steelhead

Klamath Mountains Province DPS: In 2022 abundance was 138,561 parr and site occupancy was 84%. Abundance was lower in 2015-2022 than in 2007-2014. Site occupancy has been more stable, relative to abundance, but lower in the last eight years (2015-2022) than in the first eight years (2002-2009). Since 2015 both metrics have been higher in the South Coast stratum compared to the Rogue stratum.

Oregon Coast DPS: In 2022 abundance was 279,329 parr and site occupancy was 79%. Both metrics have been stable in the DPS over the duration of the project. Abundance was typically higher in the Mid Coast or Mid-South Coast and lower in the Umpqua, relative to other strata in the DPS.

Lower Columbia River DPS: In 2022 abundance was 5,253 parr and site occupancy was 67%. Site occupancy appears stable. Abundance was lower in the last eight years (2015-2022) than in the first eight years (2006-2013), though trend detection was hampered by high variation.

Southwest Washington DPS: In 2022 abundance was 15,020 parr and site occupancy was 86%. Abundance has been lower during the last eight years (2015-2022) than in the first eight years (2006-2013). Site occupancy has been more stable, relative to abundance, though it was lower in 2014-2017 than in 2010-2013. Like the Lower Columbia River, high variation has hampered trend detection in the DPS.

BACKGROUND AND METHODS

Background and study design

This project was initiated by the Oregon Department of Fish and Wildlife (ODFW) in 1998 as one of the Oregon Plan for Salmon and Watersheds (OPSW) monitoring programs (State of Oregon 1997). Its primary objective is to monitor occupancy and abundance of Coho Salmon (*Oncorhynchus kisutch*) parr in Western Oregon. Monitoring steelhead (*Oncorhynchus mykiss*) parr began in 2002. Snorkel surveys at selected sites provided data to achieve these objectives. Monitoring informs conservation and recovery planning, reviews, and management.

Sites were selected using a Generalized Random Tessellation Stratified (GRTS, Stevens 2002) design for a random, spatially balanced sample from within Coho Salmon and steelhead rearing distribution. To evaluate status and trend a rotating panel design was incorporated into the site selection process. The design emulated the Coho Salmon three-year life cycle (reviewed by Weitkamp et. al 1995); a quarter of selected sites were placed on an annual survey rotation, a quarter were placed on a three-year survey rotation, a quarter were placed on a nine-year survey rotation, and a quarter were surveyed only once (Stevens 2002). Sites on an annual rotation provided trend detection capability and contributed to the representation of the area needed to estimate status. Sites on three and nine-year rotations augmented trend detection capability over time and contributed to the sample size for status. Sites that were visited only once contributed to sample size for status and improved the representation of the rearing distribution. Sites were selected and apportioned among the three Coho Salmon Evolutionarily Significant Units (ESUs), the four steelhead Distinct Population Segments (DPSs), and their strata in Western Oregon (Figures 1 and 2, respectively).

The spatial scope and scale of digital stream distribution network (sampling frame) employed in the site selection process have changed since 1998. In the Oregon portion of the Southern Oregon Northern California Coast Coho ESU (SONCC), sites were originally selected from a 1:100,000 (100k) scale sampling frame of 1st-3rd order streams within presumed high quality Coho Salmon rearing habitat, upstream of tidally influenced habitats. In 2002, the scope was expanded to include the presumed steelhead rearing distribution in 1st-6th order streams within the Oregon portion of the Klamath Mountains Province DPS (KMP). In 2012, the frames were revised based on surveys from 1998-2012 and converted to 1:24,000 (24k) scale. The revision was designed to include all Coho Salmon and steelhead habitat upstream of tidal areas. Surveys in 4th-6th order streams were phased out in 2012 due to funding constraints. In 2019 the frames were again revised, and the Coho Salmon frame was stratified into high- and low-quality habitats based on Species Distribution Modeling (SDM) (Julie Firman, ODFW, personal communication). All data in this report were based on the 2019 frame revision. Coho Salmon metrics on the ESU scale and those based on high quality habitats in the Interior Rogue were comparable for all years. Steelhead metrics were comparable from 2002 to present in both strata of the DPS. Juvenile steelhead in the Rogue Stratum are likely the progeny of both summer and winter run adults. Juvenile steelhead in the South Coast Stratum and the three northern DPSs in the project area

are likely the progeny of winter run adults. A more detailed description of the SONCC/KMP frame history is given by Constable and Suring (2020).

In the Oregon Coast Coho ESU (OCC), sites were originally selected from a 100k sampling frame of 1st-3rd order streams within the putative Coho Salmon summer rearing distribution. This original sampling frame was designed to include all Coho Salmon rearing habitat in these streams, except for tidal areas. In 2002, the scope was expanded to include 4th-6th order streams within steelhead distribution. In 2007 the sampling frame was revised based primarily on 1998-2006 field work and converted to 24k scale. Due to funding constraints, surveys in 4th-6th order streams were discontinued in 2009. The frame was again revised in 2012, and all data in this report were based on this revision. Annual distribution and abundance metrics for both species were comparable for all years, beginning in 1998 for Coho Salmon and 2002 for steelhead. OCC sampling frame and survey design processes before 2007 were described in detail by Jepsen and Rodgers (2004) and Jepsen and Leader (2007).

The Oregon portion of the Lower Columbia River (LCR), which includes LCR ESU, the LCR DPS, and the Southwest Washington DPS (SWW), were added to the scope of the project in 2006. Sites were originally selected from a 100k sampling frame for 1st-3rd order streams within the putative Coho Salmon rearing distribution and for 4th-6th orders streams within the putative steelhead rearing distribution, excluding tidal areas. In 2007 the sampling frame was revised and converted to a 24k digital stream network scale. In 2012, due to budget restrictions, surveys in 4th-6th order streams were discontinued in the region. The frame was again revised in 2012 and data in this report were based on this revision. Annual distribution and abundance metrics for both species in the region were comparable for all years, beginning in 2006 to the present year.

Field Sampling

Selected sites were surveyed during the base flow period, usually mid-July to early October. Sites were ~1 kilometer in length, surveyed in an upstream manner (Thurow 1994), and encompassed the GRTS point (x, y coordinates provide by GRTS process). Site length, pool length, and average pool width were measured with either a hip chain, open reel tape, depth staff, or range finder. Pool depth was measured using a depth staff. All pools ≥6m² in surface area and ≥20cm in maximum depth were snorkeled using a single pass during daylight hours. Dive lights were used to improve visibility. Visibility was subjectively based on factors that impede the ability to observe fish, including snorkeler health concerns (Rodgers 2000; Crawford 2011). In sites with adequate visibility (>90% of sites) counts were made of Coho Salmon parr, juvenile steelhead ≥90 mm in fork length (FL, visually estimated), and cutthroat trout (O. clarki) ≥90 mm FL. Due to difficulties distinguishing O. mykiss and O. clarki <90mm FL, all trout in this range were classified as 0-aged trout and were not identified to species or used in analyses (Hawkins 1997, Roni and Fayram 2000). Approximately 10% of sites are resurveyed by supervisory staff to evaluate adherence to survey protocols, observational difference among snorkelers, and the precision of counts.

Initially pools that were ≥40cm in maximum depth were snorkeled. In 2010, this criterion was lowered to include pools ≥20cm in maximum depth. This adjustment should allow larger and more consistent portions of juvenile salmonid rearing abundances to be

sampled (Constable and Suring, in press) and follows the recommendation of O'Neal (2007). Reports following the 2010 field season provide a primary analysis based the ≥40cm criterion and a secondary analysis based on the ≥20cm criterion.

Survey effort goals were to snorkel ≥40 sites in each stratum. Analysis has shown this level of effort was required to meet guidelines recommended by Crawford and Rumsey (2011); for Coho Salmon, 95% confidence intervals for abundance estimates should be ≤30% of the estimate, and occupancy estimates should be sufficiently precise to detect a 15% change in occupancy with 80% certainty.

Data Analysis

Data are summarized by ESU or DPS and stratum. Estimates of each metric, variances, and confidence intervals were created using tools developed by the Environmental Protection Agency Design and Analysis Team (Stevens 2002). In comparison tests a p-value ≤ 0.05 was considered to indicate a significant difference. The following metrics of fish distribution and abundance were estimated for each of the two target species:

- Site occupancy: The primary metric used to describe distribution. Site
 occupancy is the percent of sites where at least one individual of the target
 species was observed. Site occupancy was calculated by dividing the
 number of sites where the target species was observed by the number of
 sites surveyed for each stratum, ESU, or DPS.
- Pool frequency: A secondary metric used to describe distribution. Pool
 Frequency is the average percent of pools in a site that contain at least one
 individual of the target species. Pool frequency was first calculated at each
 site by dividing the number of pools where the target species was observed
 by the total number of surveyed pools. The resulting percent at each site
 was then averaged to obtain the pool frequency estimate within the
 stratum, ESU, or DPS.
- Abundance: The estimate of the quantity of each target species within a stratum, ESU, or DPS. Abundance was calculated by multiplying the count of target species individuals per kilometer at each site by the site weight. Target species individuals per kilometer is the sum of the snorkel count at the site divided by the length of the site. Site weight is the total length of the rearing distribution in the stratum, ESU, or DPS divided by the number of surveyed sites in the area. The site weight is adjusted for sites that were non-target i.e., sites that were dry, in tidal zones, or above fish passage barriers, (Stevens 2002). Abundance estimates were based on snorkel counts in pools that meet size criteria; they were appropriate for assessing trends but did not represent total abundance (i.e., counts were not calibrated for detection efficiency or fish occupying habitats that were not snorkeled).

To compare metrics across the 24-year time span of the project in the OCC and SONCC/KMP, annual data were binned into brood groups. Each brood group for Coho Salmon contained three consecutive years of data, based on the conventional three-year Coho Salmon life cycle (reviewed by Weitkamp et al. 1995); the first brood group was from 1998-2000, the second was from 2001-2003, etc. Each brood group for steelhead contained four consecutive years of data, based on the presumptive four-year steelhead life cycle (reviewed by Busby et al., 1996). LCR Coho Salmon and steelhead data were also binned, beginning in 2007 and 2006, respectively, for consistency with the brood groups in the OCC and SONCC/KMP. A brood group contains one iteration of each brood line and is one complete cycle of the summer rearing phase of the population. Reports covering the 1998-2021 seasons included a density metric (the count of fish divided by the surface area of the pool in which they were counted). After review, these metrics were discontinued in 2022 (Constable and Suring, in press).

Female spawner:parr recruit plots were produced using Beverton-Holt models in R version 3.4.0 (2017). AICs from models using a single line to fit all data and models with strata-specific asymptotes were compared to select the best model. Residuals were plotted to determine trend. Female spawner data used in these plots were from the ODFW Oregon Adult Salmonid Inventory and Sampling (OASIS) project (available at http://odfw.forestry.oregonstate.edu/spawn/cohoabund.htm). Trend analysis comparing pools with a ≥20cm maximum depth criterion to pools with a ≥40cm maximum depth criterion was performed using Bayesian posterior distribution models of the geometric mean inter-annual changes in abundance. Models assumed a log-linear effect and a lognormal distribution of abundances.

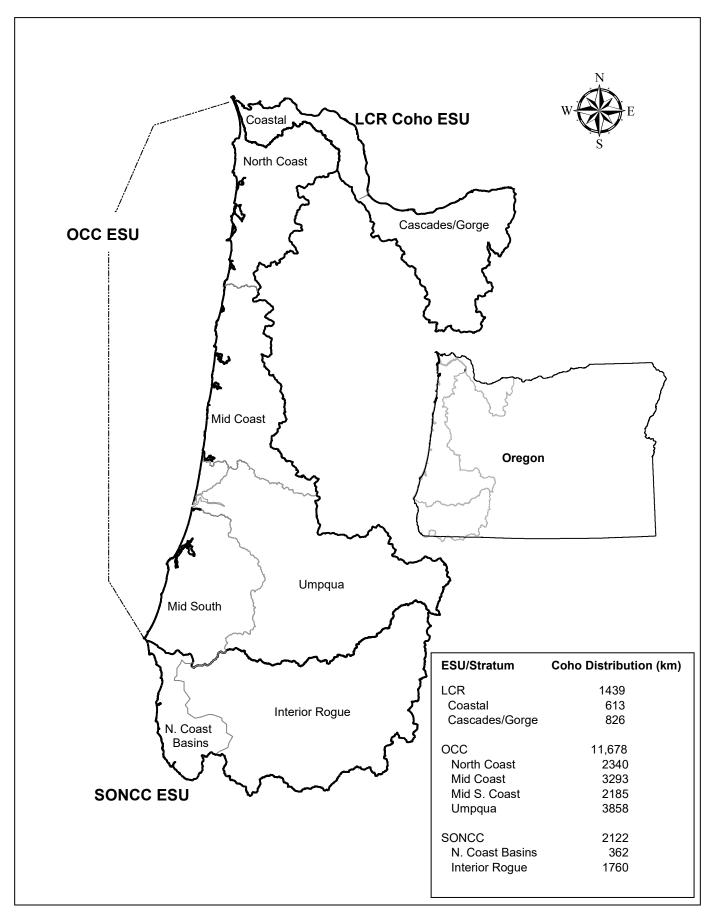


Figure 1. Coho Salmon ESUs and strata in Western Oregon. The table lists the length of coho salmon rearing distribution for 1st-3rd order streams for each area.



Figure 2. Steelhead DPSs and strata in Western Oregon. The table lists the length of steelhead rearing distribution for 1^{st} - 3^{rd} order streams for each area.

RESULTS

2022 Survey Effort and Resurveys

In 2022, 556 sites were selected within the Coho Salmon and steelhead sampling frames. Sixteen sites were determined to be non-target (outside of the sampling frames). Of the remaining 540 sites, 214 were not surveyed; 137 due to lack of landowner permission, 30 because of visibility or water quality issues, and 47 due to time restrictions. Landowner denials and lack of visibility accounted for the high number of sites that could not be surveyed in the LCR and Interior Rogue. Sites that were not surveyed were defined as target, non-response. A total of 326 sites were snorkeled, comprising, 4,137 pools in 323 km of streams. We met our 2022 survey effort goals in five of the eight strata (Table 1).

ESU	Stratum	Survey Goal	Snorkeled	Target -Non response	Non-Target
	North Coast	40	41	18	1
occ	Mid Coast	40	45	14	0
Mid-South Coast Umpqua		40	39	18	3
		40	34	21	4
LOD	Coast	40	43	33	2
LCR Cascades/Gorge		40	39	36	5
SONCC	Interior Rogue	40	40	63	1
SONCC	N. Coast Basins	40	45	11	0

The goal of a 95% confidence interval \leq 30% of the abundance estimate was met in all strata or ESUs, apart from the SONCC (Table 2). The 95% confidence interval did not meet the goal in either the high quality or low quality regions of the SONCC frame. Variance partitioning has indicated low precision was primarily due to high variation of Coho Salmon counts among the survey sites (Anlauf-Dunn, ODFW, unpublished data). Variation was likely a natural condition resulting from the distribution of parental spawners and the diversity of habitat quality and land use practices within our sampling frame (Anlauf-Dunn and Jones 2012). Resurveys in 2022 indicated Coho Salmon counts from initial surveys had a significant relationship to counts from resurveys (Figure 3, top left panel, $R^2 = 0.941$). Previous years (bottom left panel, $R^2 = 0.975$) had similar results, indicating that counts were precise and repeatable for the species. Resurvey counts of steelhead in 2022 (top right panel, $R^2 = 0.971$) showed similar precision relative to Coho Salmon and were improved over results from previous years (bottom right panel, $R^2 = 0.811$).

Table 2. Distribution and abundance estimates of Coho Salmon parr in the four strata of the Oregon Coast Coho ESU and in the LCR and SONCC. Estimates are from snorkel surveys in 1st-3rd order streams from 2022.

Stratum or ESU	Site Occupancy	Mean Pool Frequency	95% CI	Abundance in Snorkel Pools	95% CI
North Coast	88%	75%	± 11%	602,660	± 28%
Mid Coast	96%	90%	±6%	1,759,535	± 23%
Mid-South Coast	87%	80%	± 11%	1,191,902	± 24%
Umpqua	82%	76%	± 11%	1,316,727	± 22%
SONCC	48%	27%	± 35%	107,170	± 34%
LCR	56%	44%	± 18%	147,215	± 30%

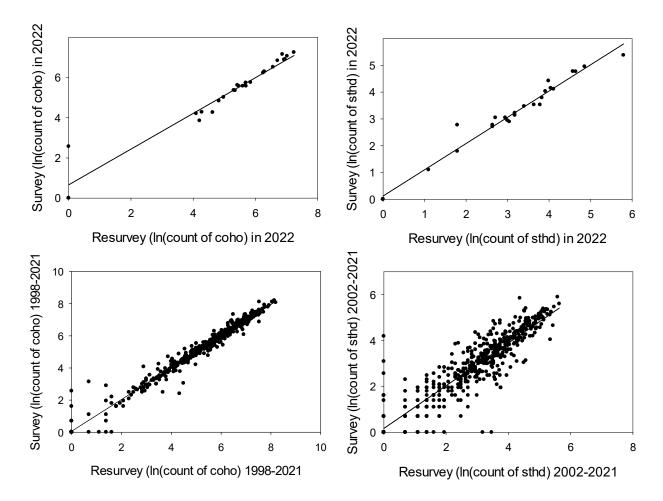


Figure 3. The relationship of Coho Salmon parr and steelhead (≥90mm in fork length) parr counts from surveys and resurveys of the same sampling sites for 2022 (top panels, n = 27) and for all previous years (bottom panels, n = 591 for Coho Salmon and n= 537 for steelhead, respectively). Data are log transformed to satisfy regression assumptions.

Coho Salmon Distribution and Abundance Trends

Southern Oregon Northern California Coast

The 2022 abundance estimate was 107,170 parr. Of these, 78% were in high quality habitats of the Interior Rogue stratum, 10% were in low quality habitats of the Interior Rogue stratum, and 12% were in the North Coast Basins stratum. This estimate was similar to the average abundance for the 2019-2021 brood group. Abundance from the 2013-2021 brood groups were low relative to the 2001-2012 brood groups (Figure 4). Site occupancy in 2022 was 48%, an improvement over the record low site occupancy observed in 2021, and similar to the average site occupancy for the 2019-2021 brood group. Site occupancies for the 2019-2021 brood group was similar to that of the 2010-2018 brood groups but low, relative to the 2007-2009 brood group (Figure 5).

Oregon Coast Coho

The 4.87 million parr estimated in 2022 was the second highest observed, and higher than the estimate for the 2019-2021 brood group. This estimate was driven by record high counts in the Mid Coast and Umpqua strata (Figure 6). Counts in the Mid-South Coast and North Coast strata were near average. Abundance for the 2019-2021 brood group and 2016-2018 brood group was similar, but abundance over these years was low, relative to the 2007-2015 brood groups. Site occupancy in 2022 was 88%, tying the record high from 2011, and was >80% in all four strata (Figure 7). Site occupancies for the 2019-2021 brood group and the 2013-2018 brood groups were similar, but the estimates for these brood groups were low, relative to the 2010-2012 brood group. National Marine Fishery Service (NMFS) recovery criterion is to have ≥80% of available habitat occupied (Wainwright et al., 2008). This criterion is assessed by aggregating site occupancy data from our project by 5th field HUC and averaging across the most recent 12-year period. (Figure 7). On the ESU scale, site occupancy averaged 82% in the last 12 years. This rate was more variable on the 5th field HUC scale.

Female spawner:parr recruit plots for the OCC strata suggested parr production was asymptotic near current spawner abundances, indicating a density-dependent effect on rearing capacity at this early life stage (Figure 8). Data suggest the rearing capacity may be slightly higher in the Mid-South Coast relative to the other strata. Four of the five highest (and 12 of the 20 highest) parr abundance estimates were in the Mid-South Coast. Plots of residuals also suggested the Mid-South Coast had a positive trend and did not suggest a trend for the other strata. In the OCC the number of parr produced per female increased when female spawner abundance decreased and, conversely, decreased when female spawner abundance increased, suggesting a compensatory effect (Figures 9 and 10). The average number of parr per female was 65 and ranged from 14 (in the Umpqua, when female spawner abundance was at its highest) to 221 (in the Umpqua, when female spawner abundance was at its 2nd lowest). The number of parr per female was below average in 2022. Similar density-dependent effects on recruits per spawner in the OCC have been described by Nickelson and Lawson (1998) and Wainwright et al. (2008). As noted in the Methods section, parr numbers were from un-calibrated visual estimates conducted only in pools meeting protocol criteria. Actual parr abundance was likely ~185% higher (Constable and Suring, 2018).

Lower Columbia River

The 2022 abundance estimate was 147,214 parr. This was higher than in 2021 and for the 2019-2021 brood group. Abundance for the 2019-2021 brood group was higher than the 2016-2018 brood group, but lower than the 2007-2009 brood group. High variance, relative to the other ESUs, has confounded the comparison of abundance among brood groups in this ESU. Site occupancy was 56% in 2022; higher than in 2021 and the estimate for the 2019-2021 brood group. Site occupancy for the 2019-2021 brood group and the preceding 3 brood groups were similar.

Unlike the OCC, plots of female spawner and parr recruits for the LCR did not suggest an asymptote in parr production at current spawner abundances and there was a weaker indication of density-dependent effects on parr production (Figure 11). A plot of residuals did not suggest a trend. The average number of parr produced per female spawner was 33. This result was 49% lower and appeared to be less influenced by female spawner abundance (Figures 12 and 13), compared to results in the OCC. The number of parr per female ranged from 7, when female spawner abundance was highest, to 71, when female spawner abundance was lowest. Data suggest any compensatory effect in the LCR was weaker and less consistent than that observed in the OCC (Figure 13). Differences between the ESUs may be due to 8 additional years of monitoring in the OCC and spawner densities (female spawners/km) in the LCR that average 38% of those in the OCC.

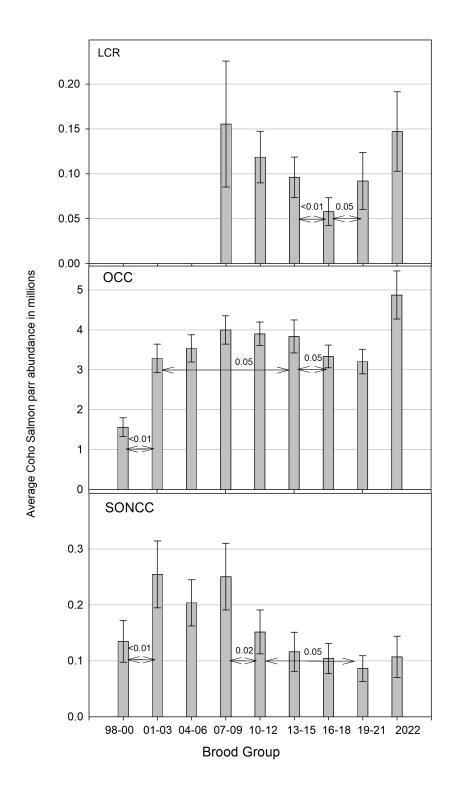


Figure 4. Three-year (brood group) trends of Coho Salmon parr abundance estimates in the three western Oregon Coho ESUs, based on snorkel surveys in 1^{st} - 3^{rd} order streams for the years 1998-2021. 2022 is shown as an individual year. Bars show the abundance estimate with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p \leq 0.05. Note differences in Y-axis scales among panels.

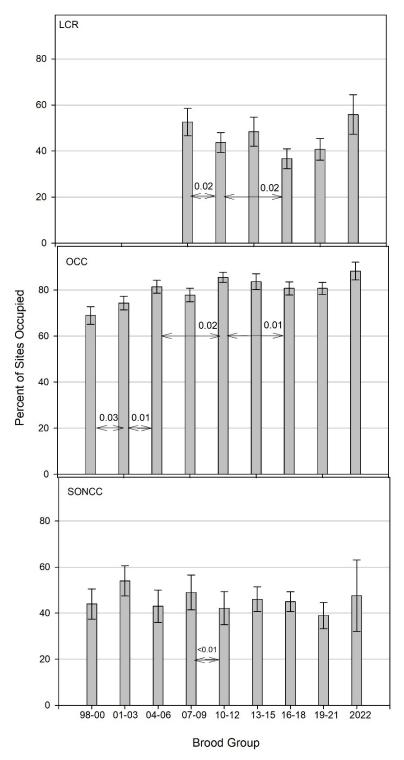


Figure 5. Three-year (brood group) trends of Coho Salmon parr site occupancy in the three western Oregon Coho ESUs based on snorkel surveys in 1^{st} - 3^{rd} order streams for the years 1998-2021. 2022 is shown as an individual year. Bars show the percent of sites occupied with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p \leq 0.05.

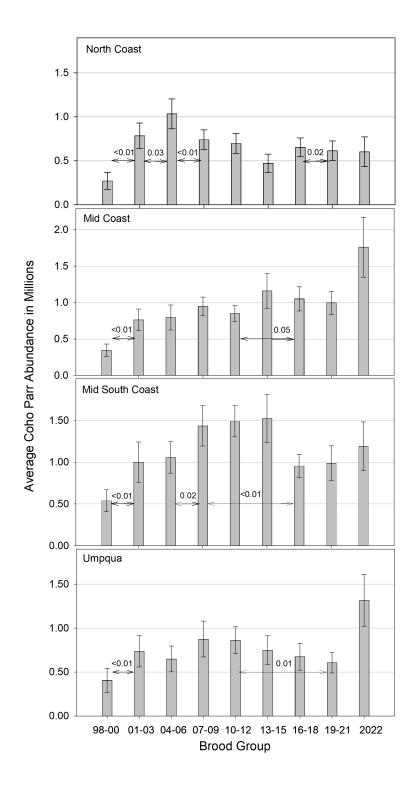


Figure 6. Three-year (brood group) trends of Coho Salmon parr abundance estimates in the four strata of the Oregon Coast Coho ESU, based on snorkel surveys in 1^{st} - 3^{rd} order streams for the years 1998-2021. 2022 is shown as an individual year. Bars show the abundance estimate with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p \leq 0.05.

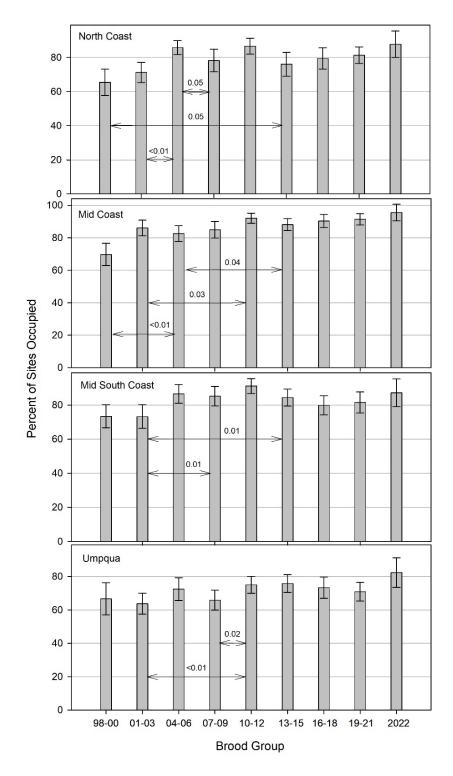


Figure 7. Three-year (brood group) trends of Coho Salmon parr site occupancy in the four strata of the Oregon Coast Coho ESU, based on snorkel surveys in 1^{st} - 3^{rd} order streams for the years 1998-2021. 2022 is shown as an individual year. Bars show the percent of sites occupied with the 95%CI. P-values for selected comparisons among brood groups are given above the horizontal arrows where p \leq 0.05.

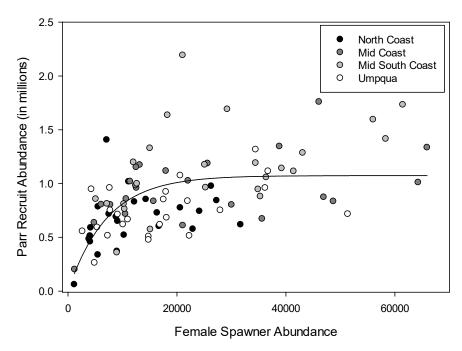


Figure 8. A Beverton-Holt model showing the relationship between the abundance of Coho Salmon parr recruits and female spawners in the strata of the Oregon Coast Coho ESU for brood years 1998-2021. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Female spawner abundance is from spawning ground surveys.

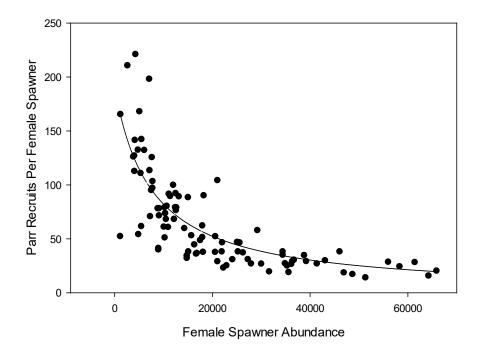


Figure 9. The relationship between the abundance of Coho Salmon female spawners and the number of parr recruits per female spawner in the strata of the Oregon Coast Coho ESU for brood years 1998-2021. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Spawner abundance is from spawning ground surveys.

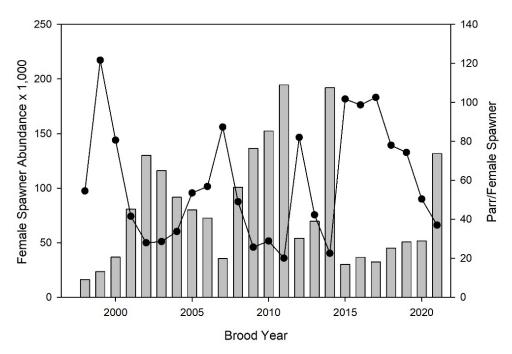


Figure 10. The abundance of Coho Salmon female spawners (gray bars) and the number of parr recruits per female spawner (black dots and line) over time in the Oregon Coast Coho ESU. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Spawner abundance is from spawning ground surveys.

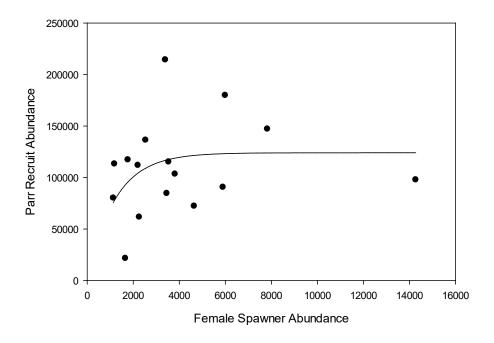


Figure 11. A Beverton-Holt model showing the relationship between the abundance of Coho Salmon parr recruits and female spawners in the Lower Columbia River ESU for brood years 2005-2021. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Female spawner abundance is from spawning ground surveys.

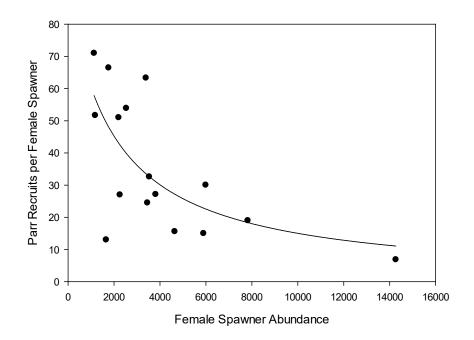


Figure 12. The relationship between the abundance of Coho Salmon female spawners and the number of parr recruits per female spawner in the Lower Columbia River ESU for brood years 2005-2021. Parr abundance is from un-calibrated snorkel surveys in 1st- 3rd order streams. Spawner abundance is from spawning ground surveys.

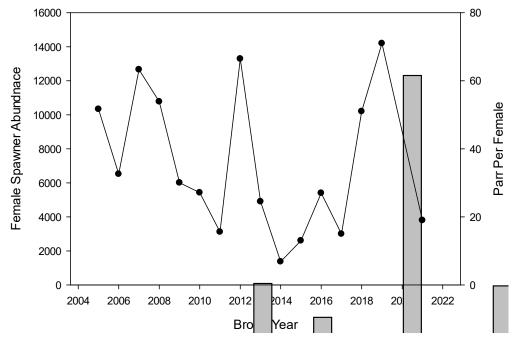


Figure 13. The abundance of Coho Salmon female spawners (gray bars) and the number of parr recruits per female spawner (black dots and line) over time in the Lower Columbia River ESU. Parr abundance is from un-calibrated snorkel surveys in 1st-3rd order streams. Spawner abundance is from spawning ground surveys.

Steelhead Distribution and Abundance Trends

Klamath Mountain Province

The 2022 abundance estimate of 138,561 parr was similar to the average for the DPS and higher than the estimate for the 2018-2021 brood group (Figure 14). Abundance for the 2018-2021 and 2014-2017 brood groups were similar, but these years were low relative to the first three brood groups. Abundance in the Rogue Stratum for 2020-2022 has shown improvement over the record low estimates from 2017-2019. Abundance in the South Coast Stratum in 2022 was similar to previous years. The 2022 site occupancy estimate of 84% was average for the DPS and similar to the 2018-2021 brood group. Site occupancy for the 2018-2021 brood group was similar to the 2014-2017 brood group, but lower than the first three brood groups (Figure 15). Like abundance, declines in site occupancy for the DPS were driven by low rates in the Rogue Stratum. In the South Coast stratum site occupancies have improved over the last four years (averaging 99%), relative to the lowest recorded estimates in 2016 and 2017. Site occupancy was 100% in the South Coast Stratum for 2022.

Oregon Coast

The 2022 steelhead abundance estimate was 279,329 parr, above average for the DPS and higher than the estimate for the 2018-2021 brood group. Abundance was similar among the 2018-2021 brood group and the previous brood groups. Abundance has typically been higher in the Mid Coast and most variable in the Umpqua, relative to the other strata. In 2022 abundance was highest in the Mid-South Coast, relative to the other strata in the DPS. In 2022 site occupancy was 79%, average for the DPS and similar to the 2018-2021 brood group. Site occupancy for the 2018-2021 brood group and preceding brood groups were similar. Among the strata, site occupancy has typically been highest in either the Mid-South or Mid Coast, lowest in the Umpqua, and most variable in the North Coast. Data from 2022 followed this trend, with site occupancy highest in the Mid-South Coast and lowest in the Umpqua.

Lower Columbia River

Abundance in 2022 was 5,253 parr, which was similar to the last two brood groups, but below average for the DPS. Abundance for the 2018-2021 brood group and the 2014-2017 brood group was similar, but lower than abundances from 2006-2013. Confidence intervals that were ~50% of the estimate have hindered the comparisons of abundance in the DPS, but a declining trend is suggested by estimates in the last five years that were <50% of average. In 2022 site occupancy was 67%, higher than the lowest recorded estimate in 2021 and higher than the average for the DPS. Site occupancy was similar for all brood groups in the DPS.

Southwest Washington

The 2022 abundance estimate of 15,020 parr was average for the DPS and higher than the estimate for the 2018-2021 brood group. Abundance for the 2018-2021 brood group was low compared to the 2006-2013 brood groups and similar to the 2014-

2017 brood group. Average abundance for the most recent eight years was 55% of the average abundance of the initial eight years, but confidence intervals >50% of the estimate have hindered comparisons during this period. In 2022 site occupancy was 86%. This estimate was higher than in 2021 estimate and higher than the average for the DPS. Site occupancy for the 2018-2021 brood group was similar to the previous three brood groups.

Table 3. Distribution and density estimates for juvenile steelhead (≥90cm in fork length) in eight strata of Western Oregon Steelhead DPS, based on snorkel surveys in 1st-3rd order streams for 2022.

Stratum	Site Occupancy	Mean Pool Frequency	95% CI	Abundance in Snorkel Pools	95% CI
North Coast	69%	30%	26%	41,169	51%
Mid Coast	89%	42%	17%	61,901	28%
Mid-South Coast	92%	69%	10%	121,949	21%
Umpqua	68%	31%	26%	54,310	41%
KMP Rogue	80%	45%	17%	53,169	36%
KMP South Coast	100%	88%	4%	85,393	15%
Lower Columbia	67%	29%	28%	5,253	41%
Southwest WA	86%	44%	17%	15,020	28%

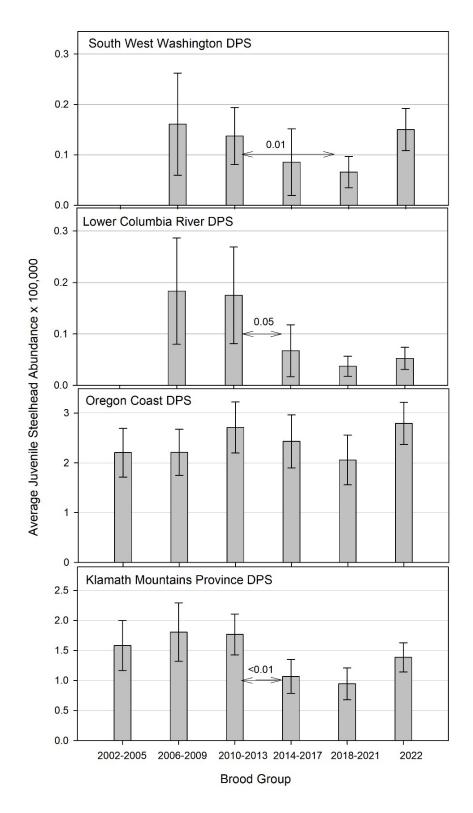


Figure 14. Four-year (brood group) trends of juvenile steelhead (\geq 90cm in fork length) abundance estimates in the four western Oregon DPSs, based on snorkel surveys in 1st- 3rd order streams in years 2002-2021. 2022 is shown as an individual year. Bars show the abundance estimate with the 95% CI for the brood group. P-values for selected comparisons among brood groups are given above the horizontal arrows where p \leq 0.05. Note differences in Y-axis scales among panels.

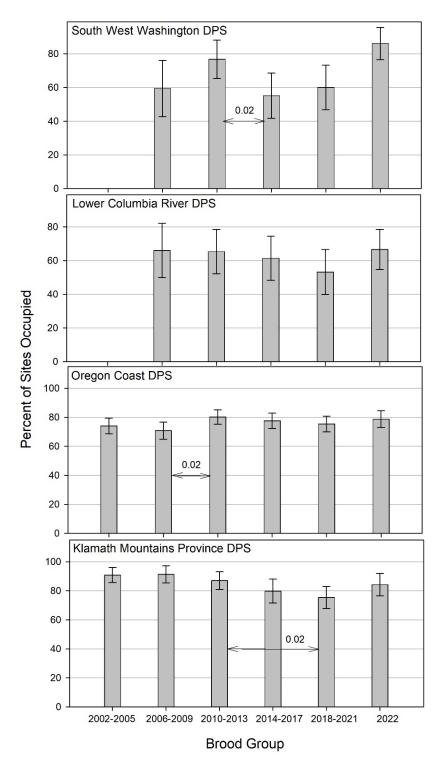


Figure 15. Four-year (brood group) trends of juvenile steelhead (≥90cm in fork length) site occupancy in four western Oregon DPS, based on snorkel surveys in 1st-3rd order streams for years 2002-2021. 2022 is shown as an individual year. Bars show the percent of sites occupied with the 95%Cl for each brood group. P-values for selected comparisons among brood groups are given above the horizontal arrows where p ≤ 0.05.

Effects of Pool Depth on Survey Effort and Snorkel Counts

Applying the ≥20cm maximum depth criterion increased the number of surveyed pools to 5305 (28%) and the number of surveyed sites to 331 (2%). Additionally, eight sites contained pools ≥40cm in maximum depth, but only had salmonid observations in pools <40cm in maximum depth. Applying the lower criteria in 2022 increased Coho Salmon site occupancy slightly (<4%) in all but the coastal stratum of the LCR, where site occupancy decreased by 2%. Steelhead site occupancy increased by ~3% in most strata when the lower pool criteria was applied; the Mid Coast and the coastal stratum of the LCR where unchanged. Paired t-tests indicated the lower criterion produced higher abundance estimates of Coho Salmon (Table 4) and steelhead (Table 5) with proportionally smaller 95% confidence intervals in most strata. This result was consistent with previous years. When the ≥20cm maximum depth criterion was applied a more negative trend in Coho Salmon abundance was observed from 2010-2022, relative to the ≥40cm criteria, but differences were <4% within each stratum.

Table 4. Comparison of estimates of Coho Salmon abundance in pools using a maximum depth of ≥20cm and in pools using a maximum depth of ≥40cm.

	2022 Coho Estimates					
Stratum	Pools ≥40 Dep		I Pools >20cm Max D		95% CI	
	Estimate	95% CI	Estimate	95% CI	Difference	
North Coast	602,660	28%	687,798	25%	3.40%	
Mid Coast	1,759,535	23%	2,088,828	22%	1.80%	
Mid-South Coast	1,191,902	24%	1,387,019	24%	0.50%	
Umpqua	1,316,727	22%	1,722,356	22%	0%	
SONCC	107,170	34%	129,293	35%	-0.30%	
Lower Columbia	147,215	30%	149,259	29%	0.50%	

Table 5. Comparison of estimates of steelhead abundance in pools using a maximum depth of ≥20 and in pools using a maximum depth of ≥40cm.

	2022 Steelhead Estimates				
Stratum	Pools ≥ 40cm Max Depth		Pools ≥ 20cm Max Depth		95% CI
	Estimate	95% CI	Estimate	95% CI	Difference
North Coast	41,169	51%	44,862	54%	-3.20%
Mid Coast	61,901	28%	68,276	26%	2.40%
Mid-South Coast	121,949	21%	137,874	16%	4.70%
Umpqua	54,310	41%	58,015	39%	1.90%
KMP Rogue	53,169	36%	54,219	36%	0.80%
KMP South Coast	85,393	15%	87,194	15%	0.30%
Lower Columbia DPS	5,253	41%	5,360	40%	0.90%
Southwest WA DPS	15,020	28%	15,040	27%	0.60%

ACKNOWLEDGEMENTS

Thank you to our field crews and supporting cast for their determination to survey streams and count fish. The list of people we would like to acknowledge is long, but we feel obligated to mention each by name: Kevin Hall, Kirsten Ressel, Aaron Truesdall, Deeann Schaal, Ethan Archambault, the Redband Rider Cory Mack, the salubrious Ricky Hays, Erin Fulop, Kenzie Howie, Justin Zapata, Brenna Blankenship, Kevin Gray, the legendary Bill Ratliff, "Rock Solid" Ryan Emig, Cole Fisher, Mikaeli Dirling, Peter Cole, Travis "trap nasty" Landon, Lane Davidson, Zack Nemeth, Mike Koranda, Dirk Patterson, Eric Bailey (the real E.B.), the intrepid Patrick Kohl, Moth Deppe, Abby Lundin, Morgan Mealy, Vanessa Keck, Matt Strickland, Sharon Crowley, and Peggy Kavanagh. Thanks always to Erin Gilbert for his GIS expertise, Matt Weeber for providing the adult data, and to Kara Anlauf-Dunn and Julie Firman for their guidance. Y'all are barnhardy. Last, but not least, a big "thank you" the hundreds of landowners who granted us access to streams on their property.

REFERENCES

- Anlauf-Dunn, K. J. and K. K. Jones. 2012. Stream Habitat Conditions in Western Oregon, 2006-2010. OPSW-ODFW-2012-5, Oregon Department of Fish and Wildlife, Salem.
- Busby. P. J., T. C. Wainwright. G. J. Bryant, L. J. Lierheimer, R. S. Waples. F. W. Waknitz, and I. V. Agomarsino. 1996. Status review of West Coast steelhead from Washington, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-27, U.S. Department of Commerce.
- Constable, Jr, R. J. and E. Suring. (in press). Implications of Metrics and Methodology for Juvenile Salmonid Monitoring in Western Oregon Streams. Northwest Science 96:
- Constable, Jr, R. J. and E. Suring. 2018. Smolt abundance estimates for the Oregon Coast Coho Evolutionarily Significant Unit. ODFW Information Report 2018-04. Oregon Department of Fish and Wildlife, Salem.
- Constable, Jr, R. J. and E. Suring. 2020. Juvenile Salmonid Monitoring in Coastal Oregon and Lower Columbia Streams, 2019. Monitoring Report No. OPSW-ODFW-2021-1. Oregon Department of Fish and Wildlife, Salem.
- Crawford, B. A. 2011. Methods for estimating instream juvenile salmonid abundance using snorkeling. Washington Salmon Recovery Funding Board. Olympia, Washington. P. 41-43.
- Crawford, B. A. and S.M. Rumsey. 2011. Guidance for monitoring recovery of Pacific Northwest salmon & steelhead listed under the Federal Endangered Species Act. National Marine Fisheries Service, NW Region. U. S. Dept. of Commerce. P. 42-43, 50.
- Hawkins, D. K. 1997. Hybridization between coastal cutthroat (Oncorhynchus clarki clarki) and Steelhead trout (O. mykiss). Doctoral dissertation. University of Washington, Seattle.
- Jepsen, D. B. and K. Leader. 2007. Abundance monitoring of juvenile salmonids in Oregon coastal streams, 2006. Monitoring Program Report Number OPSW-ODFW-2007-1, Oregon Department of Fish and Wildlife, Salem.
- Jepsen, D. B. and J. D. Rodgers. 2004. Abundance monitoring of juvenile salmonids in Oregon coastal streams, 2002-2003. Monitoring Program Report Number OPSW-ODFW-2003-1, Oregon Department of Fish and Wildlife, Salem.
- Nickelson, T. E. and P. Lawson. 1998. Population viability of coho salmon (*Oncorhynchus kisutch*) in Oregon coastal basins: Application of a habitat-based life cycle model. Canadian Journal of Fisheries and Aquatic Sciences 55:2383-2392.

- O'Neal, J. S. 2007. Snorkel Surveys. Pages 325-340 in D. H. Johnson, B. M. Shrier, J. S. O'Neal, J. A. KNutzen, X. Augerot, T. A. O'Neal and T. N. Pearsons, editors. Salmonid field protocols handbook; techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, Maryland.
- Rodgers, J. D. 2000. Abundance of Juvenile Coho Salmon in Oregon Coastal Streams, 1998 and 1999. Monitoring Program Report Number OPSW-ODFW-2000-1, Oregon Department of Fish and Wildlife, Salem.
- Rodgers, J. D., M. F. Solazzi, S. L. Johnson, and M. A. Buckman. 1992. Comparison of three techniques to estimate juvenile Coho Salmon abundances in small streams. North American Journal of Fisheries Management 12:79-86.
- Roni, P. and A. Fayram. 2000. Estimating winter salmonid abundance in small western Washington streams: a comparison of three techniques. North American Journal of Fisheries Management 20: 682-691.
- State of Oregon, J. W. Nicholas, principal writer. 1997. The Oregon Plan (Oregon Coastal Salmon Restoration Initiative). Oregon Governor's Office, Salem, Oregon, USA.
- Stevens, D. L., Jr. 2002. Sampling design and statistical analysis methods for the integrated biological and physical monitoring of Oregon streams. Monitoring Program Report Number OPSW-ODFW-2002-7, Oregon Department of Fish and Wildlife, Portland.
- Thurow, R. F. 1994. Underwater methods for study of salmonids in the Intermountain West. U.S. Forest Service, Intermountain Research Station, General Technical Report INT-GTR-307, Ogden, Utah.
- Weitkamp, L. A., T.C. Wainwright, G. J.Bryant, G. B. Milner, D. J. Teel, R. G. Kope, and R. S. Waples. 1995. Status review of Coho Salmon from Washington, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-24.
- Wainwright, T. C., M. W. Chilcote, P. W. Lawson, T. E. Nickelson, C. W. Huntington, J. S. Mills, K. M. S. Moore, G. H. Reeves, H. A. Stout, and L. A. Weitkamp 2008. Biological recovery criteria for the Oregon Coast coho salmon evolutionarily significant unit. U. S. Dept. of Commer., Status review of Coho Salmon from Washington, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-91, 199p.

APPENDIX 1 COHO SALMON METRICS

Table 6. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Oregon portion of the Southern Oregon Northern California Coho ESU. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

Southern Oregon Northern Californian Coho ESU Coho Parr Estimates									
		±95%		±95%		±95%			
Year	Abundance	CI	Density	CI	Site Occupancy	CI			
1998	176,522	51%	0.051	49%	30	35%			
1999	116,557	51%	0.218	73%	52	37%			
2000	112,029	37%	0.061	78%	51	56%			
2001	223,607	45%	0.265	46%	53	29%			
2002	325,508	37%	0.442	37%	58	23%			
2003	215,030	28%	0.413	34%	50	20%			
2004	157,239	36%	0.148	40%	42	28%			
2005	286,009	30%	0.296	37%	51	27%			
2006	168,501	34%	0.110	42%	37	28%			
2007	276,186	51%	0.227	40%	52	26%			
2008	285,760	26%	0.360	43%	57	21%			
2009	190,112	46%	0.141	42%	38	29%			
2010	140,949	43%	0.056	41%	43	23%			
2011	185,972	38%	0.114	50%	49	25%			
2012	128,124	65%	0.045	52%	33	37%			
2013	166,543	50%	0.323	95%	51	22%			
2014	118,403	46%	0.062	52%	48	35%			
2015	64,231	55%	0.026	68%	39	30%			
2016	89,967	38%	0.083	53%	45	27%			
2017	120,803	37%	0.074	46%	42	26%			
2018	101,893	46%	0.053	53%	47	26%			
2019	54,890	51%	0.040	47%	42	23%			
2020	88,396	50%	0.075	54%	46	35%			
2021	115,541	34%	0.080	63%	30	38%			
2022	107,170	34%	0.085	44%	48	33%			

Table 7. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1st order streams. The 95% confidence interval is expressed as a percent of the estimate.

Oregon Coast Coho ESU Coho Parr Estimates									
		±95%		±95%		±95%			
Year	Abundance	CI	Density	CI	Site Occupancy	CI			
1998	935,199	30%	0.212	26%	67	11%			
1999	884,929	26%	0.158	24%	60	13%			
2000	2,861,072	20%	0.265	16%	79	7%			
2001	2,969,004	24%	0.407	18%	65	9%			
2002	3,355,610	21%	0.511	20%	81	6%			
2003	3,632,891	18%	0.556	19%	78	6%			
2004	3,319,231	16%	0.454	14%	77	6%			
2005	3,086,536	15%	0.461	19%	85	5%			
2006	4,285,481	18%	0.462	14%	82	6%			
2007	4,120,906	17%	0.470	17%	76	7%			
2008	3,097,981	18%	0.341	17%	75	8%			
2009	4,941,814	16%	0.600	14%	83	6%			
2010	3,503,440	13%	0.392	17%	86	5%			
2011	4,393,927	13%	0.478	14%	88	5%			
2012	3,898,052	15%	0.383	12%	83	5%			
2013	4,436,290	17%	0.613	15%	82	6%			
2014	2,944,019	24%	0.250	20%	84	7%			
2015	4,329,397	17%	0.407	16%	77	6%			
2016	3,069,097	17%	0.273	18%	82	6%			
2017	3,619,893	17%	0.252	16%	80	7%			
2018	3,313,424	16%	0.297	14%	80	7%			
2019	3,232,929	16%	0.241	15%	78	7%			
2020	3,760,165	18%	0.258	19%	83	6%			
2021	2,602,575	16%	0.292	15%	78	6%			
2022	4,870,824	12%	0.526	14%	88	4%			

Table 8. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the North Coast Stratum of the Oregon Coast Coho ESU. Data are from uncalibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

	No	orth Coast	Stratum Coho Pai	rr Estimate	es	
		±95%		±95%		±95%
Year	Abundance	CI	Density	CI	Site Occupancy	CI
1998	238,372	71%	0.117	45%	64	25%
1999	61,228	57%	0.064	73%	53	29%
2000	513,448	39%	0.236	30%	79	14%
2001	650,882	40%	0.411	39%	53	23%
2002	728,083	39%	0.352	31%	80	12%
2003	976,142	33%	0.485	26%	80	13%
2004	842,367	30%	0.454	22%	87	9%
2005	853,247	28%	0.394	27%	82	9%
2006	1,406,547	28%	0.597	23%	88	7%
2007	1,017,969	24%	0.717	27%	83	13%
2008	370,797	48%	0.156	53%	70	22%
2009	829,855	30%	0.627	29%	82	13%
2010	775,036	25%	0.394	21%	93	7%
2011	742,914	30%	0.476	28%	85	12%
2012	577,017	33%	0.331	25%	82	12%
2013	459,220	29%	0.317	33%	78	14%
2014	337,136	28%	0.223	47%	79	18%
2015	618,560	47%	0.492	32%	71	18%
2016	485,460	33%	0.219	32%	80	13%
2017	690,210	30%	0.225	24%	80	14%
2018	784,995	28%	0.413	24%	78	13%
2019	588,926	39%	0.290	28%	78	14%
2020	521,331	27%	0.236	28%	85	11%
2021	716,662	32%	0.471	22%	81	11%
2022	602,660	28%	0.383	21%	88	9%

Table 9. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Mid Coast Stratum of the Oregon Coast Coho ESU. Data are from uncalibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

	ſ	Mid Coast	Stratum Coho Pai	rr Estimate	es	
		±95%		±95%		±95%
Year	Abundance	CI	Density	CI	Site Occupancy	CI
1998	201,219	46%	0.173	57%	63	18%
1999	201,765	49%	0.076	46%	58	26%
2000	636,561	34%	0.215	35%	88	11%
2001	803,171	31%	0.497	27%	80	12%
2002	717,782	35%	0.288	28%	88	10%
2003	873,357	35%	0.336	30%	89	9%
2004	672,677	32%	0.385	26%	74	16%
2005	610,126	27%	0.230	30%	86	8%
2006	1,187,999	39%	0.440	26%	87	9%
2007	857,588	29%	0.494	35%	78	14%
2008	805,066	27%	0.350	31%	83	12%
2009	1,345,667	21%	0.578	28%	93	7%
2010	834,439	24%	0.480	27%	92	9%
2011	802,427	27%	0.336	22%	93	7%
2012	1,009,801	23%	0.447	21%	91	8%
2013	1,117,548	29%	0.706	20%	89	9%
2014	1,025,977	51%	0.202	32%	90	10%
2015	1,335,493	22%	0.348	30%	85	10%
2016	1,019,727	31%	0.423	29%	92	8%
2017	1,173,889	35%	0.318	33%	89	9%
2018	959,394	28%	0.278	27%	90	9%
2019	1,151,923	27%	0.389	22%	84	11%
2020	982,718	36%	0.245	20%	91	8%
2021	835,531	28%	0.273	27%	96	5%
2022	1,759,535	23%	0.583	19%	96	5%

Table 10. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Mid-South Coast Stratum of the Oregon Coast Coho ESU. Data are from uncalibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

	Mid South Coast Stratum Coho Parr Estimates								
		±95%		±95%		±95%			
Year	Abundance	CI	Density	CI	Site Occupancy	CI			
1998	495,608	40%	0.370	33%	76	17%			
1999	358,029	46%	0.404	36%	70	18%			
2000	763,557	40%	0.442	27%	74	15%			
2001	998,651	56%	0.470	43%	63	24%			
2002	1,057,355	45%	0.958	33%	81	12%			
2003	946,047	34%	1.074	41%	75	16%			
2004	880,565	31%	0.631	32%	85	10%			
2005	1,114,794	29%	0.643	34%	94	8%			
2006	1,176,018	37%	0.472	26%	82	14%			
2007	1,285,252	38%	0.482	32%	84	12%			
2008	1,329,052	31%	0.698	26%	88	11%			
2009	1,691,157	30%	0.843	26%	84	11%			
2010	1,141,767	20%	0.431	28%	90	9%			
2011	1,733,106	21%	0.699	32%	88	9%			
2012	1,595,194	28%	0.394	16%	88	9%			
2013	2,192,920	29%	0.943	24%	85	10%			
2014	963,062	35%	0.272	36%	93	10%			
2015	1,415,931	33%	0.426	25%	76	14%			
2016	812,154	28%	0.293	31%	84	11%			
2017	1,198,942	25%	0.329	23%	84	12%			
2018	855,895	36%	0.314	35%	71	17%			
2019	809,809	25%	0.171	31%	82	13%			
2020	1,636,225	30%	0.337	30%	87	12%			
2021	574,107	34%	0.294	35%	71	19%			
2022	1,191,902	24%	0.462	22%	87	9%			

Table 11. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Umpqua Stratum of the Oregon Coast Coho ESU. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

	I	Umpqua S	tratum Coho Parr	Estimates	S	
		±95%		±95%		±95%
Year	Abundance	CI	Density	CI	Site Occupancy	CI
1999	263,907	44%	0.144	46%	61	25%
2000	947,507	40%	0.213	33%	73	16%
2001	516,299	47%	0.265	40%	58	17%
2002	852,391	44%	0.558	46%	74	14%
2003	837,345	35%	0.458	27%	67	14%
2004	923,622	36%	0.404	26%	67	15%
2005	508,369	35%	0.645	39%	80	14%
2006	514,918	39%	0.368	33%	73	17%
2007	960,097	34%	0.275	41%	65	15%
2008	593,066	41%	0.223	33%	63	19%
2009	1,075,136	42%	0.453	30%	73	15%
2010	752,199	39%	0.291	54%	72	13%
2011	1,115,480	28%	0.477	26%	80	11%
2012	716,040	29%	0.349	30%	73	13%
2013	666,602	27%	0.498	42%	75	13%
2014	617,845	44%	0.295	37%	78	15%
2015	959,413	43%	0.401	33%	74	12%
2016	751,757	39%	0.174	45%	74	16%
2017	556,851	45%	0.164	31%	70	18%
2018	713,140	38%	0.226	34%	76	16%
2019	682,272	40%	0.128	38%	71	14%
2020	619,890	36%	0.237	53%	72	14%
2021	476,275	31%	0.203	40%	65	16%
2022	1,316,727	22%	0.603	32%	82	11%

Table 12. Estimated metrics and associated 95% confidence intervals for Coho Salmon parr in the Oregon portion of the Lower Columbia River Coho ESU. Data are from uncalibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

	Lower Columbia River Coho ESU Coho Parr Estimates								
		±95%		±95%		±95%			
Year	Abundance	CI	Density	CI	Site Occupancy	CI			
2006	113,374	54%	0.103	69%	43	28%			
2007	115,289	39%	0.130	39%	72	13%			
2008	214,467	96%	0.076	73%	44	26%			
2009	136,558	41%	0.068	48%	41	22%			
2010	179,989	42%	0.108	41%	49	18%			
2011	103,458	45%	0.188	97%	44	22%			
2012	72,323	33%	0.066	26%	45	17%			
2013	117,372	39%	0.078	36%	52	15%			
2014	84,705	57%	0.052	42%	44	23%			
2015	97,896	28%	0.116	34%	46	19%			
2016	21,627	55%	0.011	57%	24	31%			
2017	61,780	43%	0.050	42%	39	20%			
2018	90,675	41%	0.069	38%	45	20%			
2019	112,044	61%	0.096	59%	46	19%			
2020	80,242	63%	0.065	45%	41	26%			
2021	72,295	38%	0.079	49%	33	25%			
2022	147,215	30%	0.083	30%	56	15%			

APPENDIX 2 STEELHEAD METRICS

Table 13. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon portion of the Klamath Mountains Province Steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

Klamath	Klamath Mountains Province Steelhead DPS Steelhead Parr Estimates								
		±95%		±95%	Site	±95%			
Year	Abundance	CI	Density	CI	Occupancy	CI			
2002	202,091	34%	0.091	28%	83	8%			
2003	121,823	19%	0.059	20%	90	6%			
2004	131,678	18%	0.069	20%	97	4%			
2005	177,326	18%	0.062	16%	94	5%			
2006	133,153	28%	0.052	23%	90	7%			
2007	196,727	20%	0.098	29%	93	7%			
2008	200,838	27%	0.057	21%	93	5%			
2009	191,378	31%	0.057	22%	89	7%			
2010	205,008	20%	0.065	24%	94	5%			
2011	188,466	18%	0.060	19%	92	6%			
2012	146,020	20%	0.038	27%	80	9%			
2013	167,523	18%	0.034	18%	83	7%			
2014	131,396	26%	0.059	34%	87	11%			
2015	71,675	30%	0.026	25%	85	8%			
2016	109,079	28%	0.028	26%	70	12%			
2017	115,284	21%	0.029	22%	79	10%			
2018	79,917	35%	0.018	32%	81	8%			
2019	59,402	26%	0.014	24%	57	13%			
2020	118,462	32%	0.022	21%	77	13%			
2021	120,542	15%	0.029	17%	88	6%			
2022	138,561	17%	0.034	16%	84	9%			

Table 14. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Rogue Stratum of the Klamath Mountains Province steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is express as a percentage of the estimate.

Klamath	Mountains Pro	ovince R	ouge Stratu	m Steell	nead Parr Esti	mates
		±95%		±95%	Site	±95%
Year	Abundance	CI	Density	CI	Occupancy	CI
2002	76,150	23%	0.080	38%	78	10%
2003	42,583	32%	0.056	26%	87	8%
2004	76,930	27%	0.069	25%	96	5%
2005	105,148	26%	0.064	19%	94	5%
2006	86,038	42%	0.052	28%	90	8%
2007	107,054	26%	0.107	33%	91	9%
2008	125,545	41%	0.056	25%	92	7%
2009	116,343	44%	0.061	24%	87	8%
2010	149,522	25%	0.067	28%	93	6%
2011	122,431	20%	0.065	21%	90	8%
2012	74,258	27%	0.028	41%	77	12%
2013	71,877	23%	0.028	23%	78	10%
2014	77,646	42%	0.063	40%	83	14%
2015	51,751	40%	0.025	31%	80	11%
2016	48,920	47%	0.020	37%	66	16%
2017	25,358	33%	0.022	32%	76	12%
2018	22,670	39%	0.012	39%	77	10%
2019	22,006	51%	0.007	34%	45	21%
2020	41,849	85%	0.017	35%	71	18%
2021	52,730	21%	0.021	22%	85	8%
2022	53,169	36%	0.024	25%	80	12%

Table 15. Estimated metrics and associated 95% confidence intervals for steelhead parr in the South Coast Stratum of the Klamath Mountains Province steelhead DPS. Data are from un-calibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is express as a percentage of the estimate.

Klamath	n Mountains Prov	vince Sou	th Coast Stra	itum Ste	elhead Parr Esti	mates
		±95%		±95%	Site	±95%
Year	Abundance	CI	Density	CI	Occupancy	CI
2002	125,941	53%	0.130	32%	100	0%
2003	79,240	22%	0.069	20%	100	0%
2004	54,748	19%	0.070	23%	100	5%
2005	72,178	24%	0.057	20%	93	9%
2006	47,115	24%	0.053	18%	93	8%
2007	89,672	32%	0.058	33%	100	0%
2008	75,293	27%	0.061	24%	100	0%
2009	75,035	39%	0.043	35%	97	5%
2010	55,486	21%	0.057	24%	100	0%
2011	66,034	35%	0.042	27%	97	5%
2012	71,762	31%	0.073	30%	90	11%
2013	95,646	28%	0.055	25%	100	0%
2014	53,750	35%	0.044	22%	100	0%
2015	19,924	31%	0.027	23%	100	0%
2016	60,159	39%	0.060	35%	85	13%
2017	89,926	24%	0.058	27%	89	13%
2018	57,247	46%	0.045	50%	94	8%
2019	37,396	28%	0.039	33%	100	0%
2020	76,612	27%	0.047	21%	100	0%
2021	67,812	22%	0.057	29%	97	5%
2022	85,393	15%	0.072	18%	100	0%

Table 16. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon Coast Steelhead DPS. Data are from un-calibrated snorkel surveys in 1st- 3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

(Oregon Coast Steelhead DPS Steelhead Parr Estimates								
		±95%		±95%	Site	±95%			
Year	Abundance	CI	Density	CI	Occupancy	CI			
2002	183,127	20%	0.035	26%	68	9%			
2003	241,263	22%	0.035	17%	79	7%			
2004	169,713	21%	0.032	17%	73	7%			
2005	288,482	22%	0.047	26%	77	6%			
2006	204,924	17%	0.028	19%	72	8%			
2007	219,687	25%	0.030	21%	71	8%			
2008	229,564	20%	0.030	21%	68	9%			
2009	230,839	21%	0.043	19%	72	8%			
2010	290,410	19%	0.034	20%	78	7%			
2011	275,137	19%	0.038	14%	83	5%			
2012	226,411	14%	0.032	15%	81	25%			
2013	292,388	21%	0.047	17%	79	24%			
2014	274,672	24%	0.029	18%	88	34%			
2015	136,759	23%	0.015	28%	65	18%			
2016	247,939	19%	0.020	17%	73	22%			
2017	313,308	20%	0.021	16%	84	29%			
2018	166,980	20%	0.018	19%	71	19%			
2019	185,529	22%	0.014	17%	72	8%			
2020	349,654	24%	0.030	23%	82	7%			
2021	213,708	20%	0.031	34%	77	6%			
2022	279,329	15%	0.029	20%	79	7%			

Table 17. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon portion of the Lower Columbia River Steelhead DPS. Data are from uncalibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

Lower Columbia River Steelhead DPS Steelhead Parr Estimates								
		±95%		±95%	Site	±95%		
Year	Abundance	CI	Density	CI	Occupancy	CI		
2006	30,142	47%	0.045	30%	78	18%		
2007	21,259	51%	0.036	43%	67	26%		
2008	9,965	47%	0.010	88%	61	31%		
2009	11,920	80%	0.015	56%	58	24%		
2010	23,497	55%	0.034	31%	66	19%		
2011	16,102	53%	0.036	51%	67	23%		
2012	12,148	64%	0.024	40%	61	31%		
2013	18,283	40%	0.023	40%	68	40%		
2014	12,495	49%	0.015	32%	89	93%		
2015	2,676	52%	0.007	37%	50	30%		
2016	2,905	42%	0.006	39%	46	29%		
2017	8,870	88%	0.013	67%	60	33%		
2018	5,067	41%	0.011	46%	57	28%		
2019	4,441	45%	0.011	50%	60	21%		
2020	1,913	44%	0.004	60%	52	28%		
2021	3,474	71%	0.006	44%	44	32%		
2022	5,253	41%	0.009	38%	67	18%		

Table 18. Estimated metrics and associated 95% confidence intervals for steelhead parr in the Oregon portion of the Southwest Washington Steelhead DPS. Data are from uncalibrated snorkel surveys in 1st-3rd order streams. The 95% confidence interval is expressed as a percent of the estimate.

Southwest Washington Steelhead DPS Steelhead Parr Estimates								
		±95%		±95%	Site	±95%		
Year	Abundance	CI	Density	CI	Occupancy	CI		
2006	6,333	74%	0.014	71%	53	39%		
2007	10,874	103%	0.017	75%	54	31%		
2008	30,671	50%	0.023	43%	62	27%		
2009	16,540	35%	0.027	44%	69	18%		
2010	20,996	38%	0.036	35%	79	18%		
2011	10,815	41%	0.029	41%	66	17%		
2012	13,339	45%	0.024	30%	80	50%		
2013	9,824	30%	0.023	37%	83	59%		
2014	9,411	82%	0.021	46%	68	49%		
2015	2,422	74%	0.007	80%	42	23%		
2016	20,362	52%	0.022	28%	69	41%		
2017	2,026	42%	0.004	54%	42	20%		
2018	2,525	48%	0.003	54%	45	24%		
2019	3,524	52%	0.003	39%	54	27%		
2020	11,209	42%	0.012	36%	64	22%		
2021	9,157	36%	0.013	46%	78	14%		
2022	15,020	28%	0.025	34%	86	11%		

4034 Fairview Industrial Drive SE Salem, Oregon 97302