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Landscape characteristics and coho salmon 
(Oncorhynchus kisutch) distributions: explaining 
abundance versus occupancy 

E.A. Steel, D.W. Jensen, K.M. Burnett, K. Christiansen, J.C. Firman, B.E. Feist, 
K.J. Anlauf, and D.P. Larsen 

Abstract: Distribution of fishes, both occupancy and abundance, is often correlated with landscape-scale characteristics 
(e.g., geology, climate, and human disturbance). Understanding these relationships is essential for effective conservation of 
depressed populations. We used landscape characteristics to explain the distribution of coho salmon (Oncorhynchus kisutch) 
in the Oregon Plan data set, one of the first long-term, probabilistic salmon monitoring data sets covering the full range of 
potential habitats. First we compared data structure and model performance between the Oregon Plan data set and two pub- 
lished data sets on coho salmon distribution. Most of the variation in spawner abundance occurred between reaches but 
much also occurred between years, limiting potential model performance. Similar suites of landscape predictors are corre- 

lated with coho salmon distribution across regions and data sets. We then modeled coho salmon spawner distribution using 
the Oregon Plan data set and determined that landscape characteristics could not explain presence vs. absence of spawners 
but that the percentage of agriculture, winter temperature range, and the intrinsic potential of the stream could explain some 
variation in abundance (weighted average R2 = 0.30) where spawners were present. We conclude that the previous use of 

nonrandom monitoring data sets may have obscured understanding of species distribution, and we suggest minor modifica- 
tions to large-scale monitoring programs. 

Rrsum6 : La rrpartition des poissons, tant en occupation qu’en abondance, est souvent corrrlre h des caractrristiques h l’6- 

chelle du paysage, telles que la grologie, le climat et les perturbations anthropiques. I1 est essentiel de comprendre ces rela- 
tions pour une conservation efficace des populations rrduites. Nous utilisons des caractrristiques du paysage pour expliquer 
la distribution des saumons coho (Oncorhynchus kisutch) dans la banque de donn~es d’Oregon Plan, une des premieres ban- 
ques de donnres probabilistes et ?a long terme de surveillance des saumons qui couvre l’enti~re gamme des habitats poten- 
tiels. Nous comparons d’abord la structure des donnres et la performance des modEles dans la banque de donnO, es d’Oregon 
Plan avec deux ensembles de donnres publires sur la rrpartition du saumon coho. La plus grande partie de la variation de 
l’abondance des reproducteurs se produit entre les sections, mais il y en a aussi beaucoup entre les annres, ce qui restreint 
la performance potentielle du module. Des srries semblables de variables prrdictives du paysage sont en corrrlation avec la 
rrpa~ition des saumons coho, et cela clans routes les rrgions et les ensembfeg de donnres. Nous avons ensuite modrlis6 la 
rrpartition des reproducteurs chez les saumons coho h partir de l’ensemble de donnO, es d’Oregon Plan; les caractrristiques 
du paysage ne peuvent expliquer la prrsence oppos6 ~ absence des reproducteurs, mais le pourcentage d’agriculture, l’rten- 
due des temprratures hivernales et le potentiel intrins~que du cours d’eau peuvent expliquer une pattie de la variation (R2 
moyen pondrr6 = 0,30) lh oO les reproducteurs sont prrsents. Nous concluons que l’utilisation antrrieure d’ensembles de 
donnres alratoires de surveillance ont pu avoir restreint la comprrhension de la rrpartition de l’esp~ce et nous suggrrons 
des modifications mineures aux programmes de surveillance ~ grande ~chelle. 

[Traduit par la Rrdaction] 

Introduction 

Correlative analyses linking landscape characteristics to the 
distribution and abundance of aquatic species and their habi- 

tats are used increasingly to understand how landscape struc- 
ture and content drive aquatic systems (Hughes et al. 2006; 

Steel et al. 2010; Johnson and Host 2010). The theoretical 
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framework underlying these analyses is that the local habitat 
conditions on which aquatic species depend are, in turn, con- 
trolled by patterns of land use, land form, climate, and geol- 
ogy over broad spatial extents (Frissell et al. 1986; Imhof et 
al. 1996; Richards et al. 1996). This landscape perspective is 
built on an understanding of geomorphic controls, environ- 
mental gradients, and relationships between instream habitat 

and biological communities (Ward 1998). While linkages 
among landscapes and associated physicochemical and bio- 
logical characteristics of rivers have long been recognized 
(Gorman and Karr 1978), the development of conceptual 
frameworks and tools for measuring and quantifying such 
linkages is more recent (e.g., Allan and Johnson 1997; 
Fausch et al. 2002; Hughes et al. 2006). Many studies have 
documented the statistical associations between land use and 
in-stream habitat conditions or biological communities using 
multisite comparisons and empirical models (Allan 2004). 
Collectively, these studies provide strong evidence of the im- 
portance of the surrounding landscape and of human activ- 
ities to a stream’s ecological integrity (Durance et al. 2006; 

Steel et al. 2010). 
Pacific salmonids have been a focus of landscape riverine 

analyses because these fish inhabit a large range, migrate 
over long distances, and are a target of conservation efforts 
(e.g., Pess et al. 2002; Feist et al. 2003; Steel et al. 2004). A 

better understanding of salmonid abundance and spatial 
structure during their freshwater life stages is needed for 
managing declining populations. Information about how 
abundance and structure are impacted by landscape condi- 
tions and large-scale human activities can support decisions 

about the location of conservation and restoration actions, 
monitoring plan designs, or mitigation of the impacts of fu- 
ture human development. 

Although landscape predictor variables are widely avail- 
able (Johnson and Gage 1997; Mertes 2002), the collection 

of biological response data over landscape scales remains a 
major challenge. Much of the research on correlations be- 
tween salmon and landscapes (e.g., Pess et al. 2002; Isaak et 
al. 2003; Steel etal. 2004) has been hampered by depend- 
ence on existing biological data, small data sets, and nonran- 
dom sample-reach selection. Data are often from index 
reaches, which are usually handpicked to monitor areas of 
high fish production. Trends in coho salmon (Oncorhynchus 
kisutch) stocks along the coast of Oregon, USA, for example, 
have been estimated from spawning fish surveys conducted 
in index reaches annually since 1950 (Cooney and Jacobs 

1995). While such data may have a long history, they are 
not sufficient for salmonid population management (Jacobs 
et al. 2002). Population estimates based on data from index 

reaches are often biased (Jacobs et al. 2002; Isaak et al. 
2003; Courbois et al. 2008). 

The monitoring strategy of the Oregon Plan for Salmon 

and Watersheds (http://nrimp.dfw.state.or.us/OregonPlan/) 
(hereafter referenced as the Oregon Plan) was developed in 
response to the need for accurate estimates of salmon popula- 

tion abundance, trend, and spatial structure over large areas. 
It implements a probabilistic sampling of river reaches and 
thus improves collection of salmon abundance and distribu- 

tion data. The sampling strategy provides a system for col- 
lecting data on salmon population performance using a 
spatially balanced, random sample that produces unbiased es- 

timates of population abundance over time with associated 
estimates of precision (Stevens 2002). A further advantage 
of probabilistically sampled data is that the explicit sampling 
frame provides a clear domain over which inference can be 
drawn and over which models based on that data can be ap- 

plied. Observations cover a wide range of stream reaches, 
adding types of reaches often excluded by opportunistic or 
selective sampling schemes. Including a wide range of 
reaches, for example, those where salmon only occasionally 
spawn, allows one to differentiate between landscape charac- 
teristics driving fish abundance and productivity and those 
correlated with occupancy or spatial structure. However, 
such a sampling approach is likely to yield a data set with 
numerous observations of zero. These zeros might result 
from multiple processes such as observer error, absence of 

fish even where reach conditions are suitable, and unsuitable 
conditions (Martin et al. 2005). Although potentially provid- 
ing new information on salmon distribution and occupancy, a 
data set with numerous zeros also presents statistical chal- 
lenges. 

In this paper, we take advantage of probabilistically 
sampled data, collected under the Oregon Plan, to expand 

our understanding, of coho salmon spawner distribution and 
to quantify relationships between landscape characteristics 
and both occupancy and abundance of spawning coho sal- 
mon. The specific objectives of our study are (i) to quantify 
and compare variance in spawner counts over space and time, 
(ii) to identify those landscape features most strongly corre- 
lated with occupancy and abundance, (iii) to compare models 
of occupancy versus abundance, and (iv) to compare models 
built from the Oregon Plan data set to models based on data 
collected using more ad hoc sampling schemes. The two pre- 
viously published data sets, each from a nonrandom selection 

of index reaches, are the Firman et al. (2011) data set on 
coho salmon within the same Oregon Coast region and the 

Pess et al. (2002) data set describing coho salmon distribu- 
tion in the Snohomish River basin. Our analysis goes beyond 
previous riverine landscape studies because of the probabilis- 
tically sampled biological response data and the large sample 
size (9 years of data from 95 stream reaches). We synthesize 

how data collected using a random sampling design has 
changed our understanding of the impacts of landscape char- 
acteristics on salmon populations, and we outline the impli- 
cations of our analyses for designing large-scale aquatic 
monitoring programs. 

Materials and methods 

Study area 
All Oregon Plan survey reaches in our analysis are within 

the Oregon Coastal Province (Fig. 1; 20 305 km2). The re- 
gion is dominated by mountains and is underlain primarily 
by marine sandstones and shales or by basaltic volcanic 
rocks. Elevations range from 0 to 1250 m, though most coho 
salmon habitat is below 700 m and in areas of lower gra- 
dients (Burnett et al. 2007). The temperate, maritime climate 
provides mild, wet winters and dry summers. Base flows pre- 
dominate in late summer; peak flows occur in the fall follow- 
ing winter rainstorms and rain-on-snow events. 

The study area is dominated by coniferous forests. Western 
red cedar (Thuja plicata) and bigleaf maple (Acer macrophyl- 
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Fig. 1. Study area in Oregon, USA, with watersheds draining to 
each survey reach identified. Legend denotes coho salmon spawners 
per kilometre in the study reach within each watershed. 
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lum) are found in riparian areas. Approximately 50% of the 
riparian areas adjacent to streams with the highest potential 
to provide habitat for coho salmon is either nonforested or 
has been recently logged (Burnett et al. 2007). Upland forest 
disturbance regimes have been driven by timber harvest and 

recent fire suppression as well as by past infrequent but in- 
tense wild fires and windstorms (Franklin and Dyrness 
1988). Most of the current forestland is relatively young, and 
the larger fiver valleys have been cleared for agriculture (Oh- 
mann and Gregory 2002). The majority of the land is pri- 
vately owned; about a third of the land is publicly managed 
(Spies et al. 2007). In addition to coho salmon, four other 
salmonid species reside in the study area: coastal cutthroat 
trout (Oncorhynchus clarkii), Chinook salmon (Oncorhyn- 

chus tschawytscha), chum salmon (Oncorhynchus keta), and 
steelhead ( Oncorhynchus mykiss). 

Coho salmon data 
Coho salmon in the study region belong to the Oregon 

Coastal Coho Evolutionarily Significant Unit (ESU) (Weit- 
kamp et al. 1995), which is listed as threatened under the 
US Endangered Species Act of 1973. To monitor abundances 
of coho salmon spawners under the Oregon Plan, the Oregon 
Department of Fish and Wildlife first divided the river net- 
work in the ESU into reaches about 1.6 km long; reach 
breaks were aligned with natural features wl-~enever possible. 

They selected reaches for monitoring according to a probabil- 
istic survey design (Stevens 2002). Reaches were visited 

evetT 7-10 days from mid-October until late January to esti- 
mate total spawners. Coho salmon abundance over an entire 
spawning season in each sampled reach was estimated from 
the spawning survey counts using the area-under-the-curve 
(AUC) method (e.g., an approximation to the integral of the 

curve that describes fish counts over time; Beidler and Nick- 
elson 1980; Hilborn et al. 1999) and standardized as spawn- 

ers per kilometre. During each survey, surveyors walked 

upstream counting all live and dead coho salmon. Counts of 
jacks (<50 cm fork length) were kept separate from counts of 
adults; counts of marked fish were kept separate from un- 
marked fish; and counts of new carcasses were kept separate 
from counts of previously handled carcasses, which were 
marked by removing the tail. Counts were included in AUC 
estimates only when water visibility was good enough to see 
to the bottom of riffles. If fish were still spawning in a reach 
at the end of the season, surveys of that reach generally con- 
tinued until a zero.count was obtained. The average coho sal- 
mon is assumed to stay alive on the spawning grounds for 

11.3 days (Willis 1954; Beidler and Nickelson 1980; Perrin 
and Irvine 1990). Thus, the probability of detection, if fish 

were present, was very high, and the probability of detecting 
an effective spawning situation (two fish present at the same 
time) was even higher. 

Oregon Plan monitoring surveys feature a rotating panel 
design with rotations every 1, 3, and 9 years to coincide 
with the 3-year life cycle of coho salmon. Under the Oregon 
Plan, an additional set of sites are surveyed only once. These 
sites are not used in our analysis. The Oregon Plan sampling 
design is intended to balance the need to estimate population 

abundance in each year (for which precision improves by 
sampling more reaches within a year) and the need to detect 
trends over time (for which power improves by revisiting the 
same reaches year after year) (Larsen et al. 2001, 2004). 

We analyzed Oregon Plan data from reaches that were sur- 
veyed annually from 1998 to 2006 and used log-transformed 
coho salmon densities (spawners per kilometre) to help meet 
normality assumptions. For all analyses, we excluded four 
reaches in basins dominated by lakes (Siltcoos Lake, Tahke- 

nitch Lake, and Tenmile Lake) and reaches that were shorter 
than 0.6 km. In addition, we excluded all reaches with fewer 
than seven surveys in the period 1998-2006 and two reaches 
that were never observed to have spawners and were there- 
fore considered not to reflect potential spawning habitat. Our 
total sample size was 95 reaches, with 53 reaches surveyed in 
all 9 years, 28 reaches surveyed in 8 years, and 14 reaches 

surveyed in only 7 years. 

Landscape data ’ 
Our predictor variables for modeling coho salmon were 

created from geospatial data layers describing climate, geol- 
ogy, land form, and land use. These predictors are similar to 
those used in other riverine landscape studies on other salmo- 
hid species or life stages (e.g., Van Sickle et al. 2004; Steel et 
al. 2004; Burnett et al. 2006). We focused on those landscape 
characteristics thought to influence the distribution and abun- 
dance of coho salmon in the Oregon Coastal Province (Ta- 
ble 1). We included stream gradient, precipitation, and mean 
annual flow because coho salmon spawn in small, low- 
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Table 1. Geospatial variables used in analysis and source data layers with associated scale. 

Geospatial data Gridcell 
layer Map scale size 

Modeled air NA 4000 m 
temperature 

Modeled NA 4000 m 
precipitation 

Geology A 1:500 000 NA 

Geology B 1:500 000 NA 

Land ownership 1:24 000 NA 

Tree size and 1:24 000 - NA 
type            1:500 000 

Timber harvest NA 25 m 

Land use NA 25 m 

Roads 1:24 000 10 m 

Cow density NA 30 m 

Gradient 1:24 000 10 m 

Elevation 1:24 000 10 m 

Stream flow 1:24 000 NA 

Intrinsic 1:24 000 10 m 

potential 

Description 

Ambient air temperatures (1961-1990) expressed as means over the subtypes described, 
from Precipitation Elevation Regressions on Independent Slopes Model (PRISM) (Daly 
et al. 1997); calculated as an area-weighted mean 
¯ Maximum annual temperature 
¯ Minimum annual temperature 

¯ Annual temperature range (AnnualRange) 
¯ Summer temperature range 

¯ Winter temperature range (WinTRange) 
Cumulative mean annual precipitation (1961-1990) from PRISM (Daly et al. 1997); cal- 

culated as an area-weighted mean (Precip) 
Classification of geologic map units according to major lithology (Walker et al. 2003) 

¯ Alluvium 

¯ Landslide (Landslide) 
¯ Mafic (Mafic) 
¯ Sedimentary (Sedimentary) 

Classification of geologic map units according to major lithology as generalized from the 
Quaternary geologic map of Oregon (Walker and MacLeod 1991) 
¯ Resistant rock (Resistant) 
¯ Intermediate rock 
¯ Weak (erosive) rock (Weak) 
¯ Unconsolidated deposits (Unconsol) 

Land ownership classification from the Oregon Department of Forestry and aggregated 
into classes (Burnett et al. 2007) 
¯ US Bureau of Land Management (BLM) 
¯ USDA Forest Service 
¯ Public lands = BLM + USDA Forest Service + State of Oregon (Public) 
¯ Private industrial lbrests and all other private lands (Privatelnd) 

¯ Private nonindustrial forest (PrivateNI) 
Predictive mapping of forest composition using direct gradient analysis and nearest neigh- 

bor imputation. Thirty-four original vegetation types were generalized to five (Ohmann 
and Gregory 2002), 
¯ Large conifers (>50 cm diameter) 

¯ Medium trees (25-50 cm diameter) 
¯ Small trees (SmallTrees, <25 cm diameter) 

¯ Remnant (Remnant.) 
¯ Hardwood (Hardwoods) 

Timber harvest occurrence (Lennartz 2005) 
¯ Not harvested before or during spawner survey 

¯ Harvested prior to 1998 (Cu~t) 
¯ Nonforested land (NonForest) 

A combination of forest cover, human development, and zoning (Burnett et al. 2007) 
¯ Agricultural (Ag) 
¯ Rural 

a. Rural residential 
b. Low density rural residential 

Road density expressed as linear km of road per unit area of corresponding area of influ- 
ence (Roads) 

Density of cows per unit area of grazeable land on grazing allotments, by county; based on 
the 1997 Agricultural Census and the National Land Cover Data (NLCD) (National Atlas 
of the United States 1997) (CowDensity.) 

Calculated from USGS 1:24 000, 10 m digital elevation model (DEM); defined as rise 
(upstream elevation minus downstream elevation of index reach) over run (river kilo- 
metre length of index reach) multiplied by 100 

Elevation of downstream terminus of reach, as measured from 10 m DEM (Elevation) 
Modeled mean annual (1961-1990) stream discharge (m3.s-1, Clarke et al. 2008) 

Predicted total area of instream rearing habitat for juvenile coho salmon (O. kisutch) (Bur- 
nett et al. 2007) (IntPotential) 

Note: Variable names are identified and underlined for those variables that were identified in a logistic model (Table 3), ended up in the final set of mixed 
models (Tables 4 and 5), or were included in the large-scale models in Firman et al. (2011) (Table 5). NA, not applicable. 
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gradient tributaries (Nickelson et al. 1992; Montgomery et al. 
1999; Lawson et al. 2004). Land management, such as forest 
harvest and agriculture, also clearly affects the abundance of 
deep, shaded pools (Bisson and Sedell 1984) that are impor- 
tant for juvenile rearing (e.g., Hartman 1965; Narver 1978; 
Scrivener and Andersen 1984). We specifically included at- 

tributes identified as important predictors of coho salmon dis- 
tribution in previous analyses of index-reach data for this 
same region (Firman et al. 2011) and of index-reach data for 
the Snohomish River in Washington State (Pess et al. 2002). 

The area of influence (AOI) over which we summarized 
landscape characteristics relevant to each survey reach in- 

eluded all seventh-field hydrologic units (Clarke and Burnett 

2003) adjacent to that reach. Hydrologic units are nested 
watersheds as designated by the US Geological Survey. The 
AOI in our analysis usually encompassed all lands draining 
directly into the reach from the sides (for larger reaches) and 
all lands draining into the reach from both the sides and 

above (for smaller reaches). To quantify landscape predictor 
variables within each AOI, we calculated the fraction of total 
AOI for categorical variables (i.e., geology, land cover). For 
continuous variables (i.e., air temperature or road density), 
we calculated the area-weighted mean to provide an indica- 
tion of average conditions over the entire AOI. For each sur- 

veyed reach, we also calculated the length-weighted average 
of intrinsic potential for coho salmon. Intrinsic potential eval- 
uates species-specific suitability in the absence of anthropo- 
genic impacts by indexing and combining stream gradient, 

stream constraint, and mean annual stream flow (Burnett et 
al. 2007). Inputs used to calculate coho salmon intrinsic po- 
tential were previously estimated from field data and 10 m 
digital elevation models (DEMs) (Clarke et al. 2008). 

Statistical methods 
We applied a series of three independent statistical analy- 

ses. (i) We used variance partitioning to better understand 
the sources of variation in our coho salmon spawner data. 
(ii) We built the best possible model to explain the distribu- 
tion of coho salmon in the Oregon Plan data set from land- 
scape characteristics. Because of the large number of zeros 
in the data, we modeled occupancy and abundance of coho 
salmon spawners separately using a two-step modeling proc- 
ess akin to a hurdle model. Hurdle models have been suc- 
cessfully used on a wide range of problems (e.g., Shonkwiler 
and Shaw 1996; Potts and Elith 2006). In the first step, we 
built a logistic regression model to explain presence vs. ab- 
sence patterns or occupancy. In the second step, we modeled 
annual abundance patterns within occupied reaches¯ (iii) We 
compared variance partitioning results and significant land- 
scape predictors between the Oregon Plan data set and the 
Firman et al. (2011) and Pess et al. (2002) data sets¯ 

Understanding and comparing the structure of the data: 
variance partitioning 

Variance partitioning allows us to estimate the proportion 
of total variation in coho salmon spawner abundance data 
that we could account for if our landscape models were per- 
fect. Accounting for all of the variation in the data is an un- 
realistic expectation if a part of that variation comes from 
unmodeled sources. In our case, we are modeling consistent 
reach-to-reach differences not temporal variation. We fit ran- 

dom effects models to explain this reach-to-reach variation 
only. Our modeling approach accounted for differences in 
mean abundance for each year but did not explain differences 
in mean abundance across years. The residual variation in our 
final models inchides measurement error, lack of fit, and 
year-to-year variation. We calculated the ratio of reach-to- 
reach variance over residual variance as a relative measure 
of precision that indicates the potential for finding a relation- 
ship between variables (Kaufmann et al. 1999)¯ The ratio of 
reach-to-reach to residual variation is a measure akin to a sig- 
nal-to-noise ratio. It explains how much of the variation in 
the data occurs between reaches (the signal) versus how 
much variation remains unexplainable even after considering 
year-to-year variation (the noise)¯ 

From the variance components, we estimated the ratio of 
reach-to-reach variance over residual variance (tTr2each/O’r2esidual) 
and, from that, the maximum R2 value that could be achieved 
given the observed residual variance and a perfect correlation 
between coho salmon density (spawners per kilometre) at a 
particular reach and landscape characteristics. We explored 
the magnitude of year-to-year variance as compared with 
reach-to-reach variance, but we did not include the year-to- 
year variance in the residual variance because our models ac- 
counted for some of the differences in mean abundance each 
year: The estimated maximum R2 is simply an indication of 
what might be considered a good model fit. The exact value 
of the maximum model fit will depend on the type of model 
used. 

Two-step modeling: occupancy and then abundance where 
present 

We assumed that most zeros in the Oregon Plan dam set 
represent true absences of coho salmon spawners, as reaches 
were revisited on up to 10 occasions in a spawning season; 

therefore, we did not chose a zero-inflated model to account 
for incomplete detection (e.g,, Wenger and Freeman 2008). 
Instead, we lumped zeros together and applied a modified 
hurdle model addressing two processes: one generating the 
zeros (occupancy) and one generating the positive values 
(abundance given occupancy). The approach begins by mod- 

eling the data as presence vs. absence. For observations in 
which the "hurdle" of presence is achieved, an independent 

model of the nonzero values is built. The use of a hurdle 
model allows for the possibility that the process driving oc- 
cupancy (zeros) differs from the process driving abundance 
given that the location is occupied (positive values). 

We developed logistic regression models with landscape 
predictor variables to explain presence vs. absence of coho 
salmon spawners across reaches in each year. Where spawn- 

ers were present, we modeled density (spawners per kilo- 
metre) using linear mixed effects models as implemented in 
Proc Mixed in SAS (Littell et al. 1996). The response data 

were annual time series of coho salmon density (spawners 
per kilometre), including only observations greater than zero. 

Data were log-transformed to meet normality assumptions. 
We used a repeated measures design, with the landscape var- 
iables measured across reaches only and the density estimates 
measured within reaches. The correlation among density esti- 

mates at a particular reach was modeled using an ARMA 
(1,1) correlation structure, and reaches were assumed to be 
independent; thus, the unscaled covariance matrix is block di- 
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agonal with ARMA(1,1) blocks corresponding to each reach 

(Littell et al. 1996). Akaike’s information criterion (AIC) was 
used to select the best fitting correlation structure. In addi- 

tion, we assumed that the mean density in each year was ran- 
domly distributed around the mean over all years, so we 
included a random intercept. All models in this step were fit 
with maximum likelihood procedures. 

The model selection procedure was a modified all-subsets 
procedure used in similar published analyses (Steel et al. 
2004; Firman et al. 2011). We considered a maximum model 
size of three variables, ruling out models based on AIC values, 

high collinearity, or low stability (e.g., model fit is strongly in- 
fluenced by only one observation with high leverage). We fit 
the null model (intercept only), all one-variable models, and 
all two-variable models including a quadratic term as a second 
covariate. To save computer time, we fit three-variable models 

by adding all potential predictors only to two-variable models 
with an AIC less than that of the null model. We then calcu- 
lated the difference in AIC values between each model of any 
size and the lowest AIC among all models (AAIC). We re- 
tained all models with a AAIC less than four. This relatively 
conservative cut-off (Burnham and Anderson 2002) was ap- 
plied to reduce the list of candidate models. 

We further refined the set of best models using two criteria. 
The condition index (Belsley et al. 1980) identifies models in 
which predictor variables are correlated with one another. 

Models with a condition index > 10 have moderate collinear- 
ity and were rejected. Cook’s D was calculated to identify un- 

stable models due to data points with high leverage; models 
with data points for which D > 1.00 were eliminated. To 
identify the final set of best models, we ranked the remaining 
models by ascending AIC and calculated AIC weights (Burn- 

ham and Anderson 2002). The final set of best models were 
those for which the AIC weight of the next model was less 
than 0.05 or the AIC weight of the next model was less than 
0.10 and the sum of the AIC weights for the current set of 
models was greater than 0.50. To manage for uncertainty in 
model selection, we present a set of best models. 

Comparison with previous analyses 

We compared our data structure and model results with 
two other previously published data sets, each from a nonran- 
dora selection of index reaches. The Firman data set contains 
observations of adult coho salmon densities (spawners per 
kilometre) from 44 index reaches over 17 years in the study 
region covered by the Oregon Plan data set (Firman et al. 
2011). The Pess data set contains observations of fish days 
(sum, over observation period, of live fish observed on each 
survey date multiplied by the number of days between sur- 
veys) from 54 index reaches over 15 years in the Snohomish 
River basin, Washington (Pess et al. 2002). We estimated the 

reach-to-reach, the year-to-year, the residual, and the ratio of 

reach-to-reach to residual variation for both of these addi- 
tional data sets. 

To compare our landscape modeling results with those of 
Firman et al. (201 I), we attempted to fit a mixed model to 

the full Oregon Plan data set (zeros and positive values). To 
compare our results with that of Pess et al. (2002), we fit hi- 
erarchical linear models following their methods. Model se- 
lection considered all subsets up to three landscape 
variables, including a quadratic term. 

Fig. 2. Mean coho salmon density (spawners per kilometre) when 
spawners were present between 1998 and 2006 at each reach from 
the Oregon Plan monitoring data (y axis) organized by the number 
of years in which no spawners were observed at that reach (x axis). 
The negative slope is to be expected, but the surprising result is the 
relatively high density of spawners observed at reaches with 2, 3, 
and even 4 zears in which spawners were completely absent. 
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Results 

Understanding the structure of the data: variance 
partitioning 

The Oregon Plan data set contains a large number of zeros, 
not all of which represent poor habitat. The Oregon Plan data 
set included 97 annual observations of zero spawners, ap- 
proximately 13% of the data. Only 27 of the 95 reaches had 
fish in every year surveyed; about half of the reaches (48) 
had no spawners in at least 2 years. While the mean spawner 

density when spawners were present appears related to the 

number of years in which spawners were absent (Fig. 2), this 
pattern was not as strong as might be expected. Even reaches 
with a relatively high mean spawner density (when spawners 
were present) sometimes had 2, 3, and even 4 years of obser- 
vations in which not a single fish was detected. 

Much variation in spawner density within the Oregon Plan 
data set occurs between reaches, though substantial variation 
also occurs between years (Table 2). The ratio of reach-to- 
reach variation and residual variation is only 1.2, suggesting 
that highly precise landscape models are not feasible. The es- 
timated maximum R2 we can expect for this Oregon Plan 

data set is 0.55 given a perfect correlation between landscape 
characteristics andreach-level coho salmon spawner densities 
in a given year. 

Two-step modeling: occupancy and then abundance 
where present 

Although coho salmon spawners were present in all sur- 
veyed reaches during 2003, in other years, up to 29 reaches 
were observed with zero spawners (Table 3). The annual lo- 
gistic models were quite variable in their ability to predict 
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these observations of zero spawners (specificity; Table 3). On 
average, landscape models correctly classified 37% of the 
reaches observed with zero spawners. The proportion of these 
reaches correctly classified ranged from 0.10 to 0.75, depend- 
ing on the year, with the highest accuracy in a year when 
only four reaches were without spawners. We also note that 
the set of landscape predictors in the best logistic model dif- 
fered every year (Table 3). 

Mixed models using only nonzero observations explained 
about 30% of the among-reach variation in spawner density 
(Table 4). Our set of best models included four models. Key 

landscape predictors in these models were percent agricul- 
ture, winter temperature range, and intrinsic potential. 

Comparison with previous analyses 

Variance partitioning results and the estimated maximum 
R2 values were comparable for all three data sets: the Oregon 

Plan, the Firman et al. (2011) data set, and the Pess et al. 
(2002) data set (Table 2). Because all possible spawning lo- 
cations were included in the sampling frame, the Oregon 
Plan data set contains more observations with zero fish 
counts than the data sets based on index reaches. The per- 
centage of the variance attributable to year-to-year variation 

(a~ear) is also largest for the Oregon Plan data set, though es- 
timated maximum Rz was similar across all three data sets 

(Table 2). 
Similar suites of landscape characteristics were correlated 

with coho salmon distribution across all three data sets 
(Table 5). However, geology variables were included as land- 
scape predictors in models for the index data sets but not for 
the probabilistically sampled Oregon Plan data set. With the 
Oregon Plan data set, neither the mixed model approach from 
Firman et al. (2011) nor the hierarchical modeling approach 
from Pess et al. (2002) yielded useful models. Models built 
using these methods had R2 values less than 0.10 and no stat- 
istically significant landscape predictors. 

Discussion 

We found that coho salmon spawner abundance along the 
Oregon Coast is linked to landscape characteristics such as 
land ownership, percent agriculture, and the intrinsic poten- 

tial of the streams to support coho salmon. No combination 
of landscape predictors was, however, able to consistently ex- 

plain reach occupancy of coho salmon spawners. Our models 
for explaining coho salmon abundance were comparable to 
those of previous studies using data from index reaches 
(Pess et al. 2002; Firman et al. 2011); however, model per- 
formance was not as strong in our study as in these previous 
studies. We suggest a revised conceptual model in which 

(i) the presence vs. absence of spawners is driven by cur- 
rently unexplained factors and (ii) the abundance of spawners 

where present is controlled to some degree by landscape con- 
ditions. We encourage probabilistic sampling schemes in 

other regions and tbr other species to determine whether this 
conceptual model is unique to Oregon coastal coho salmon. 

Understanding coho salmon abundance 

Observed correlations between landscape characteristics 

and coho salmon abundance are consistent with our under- 
standing of how underlying physical attributes can influence 

fish habitat. Geology and climate dictate the range of physi- 
cal and morphological characteristics that a stream reach can 
exhibit and partially determine the physical and biological 
characteristics of fish habitat within the reach (Montgomery 

et al. 1999). Human land-use impacts such as grazing, agri- 
culture, and/brestry can further affect in-stream habitat qual- 
ity and salmon population performance (Beechie et al. 1994; 
Bradford and Irvine 2000). Bilby and Mollot (2008), for ex- 
ample, found that abundance of coho salmon populations de- 
creased in areas where urbanization increased. 

Looking across modeling results from the Oregon Plan 

data set and the two index data sets, we find that a combina- 
tion of geology, climate, and land-use variables can explain a 
significant proportion of the variance in spawner abundance, 
especially given the year-to-year and residual variance in the 
data. The set of predictors for our abundance model (models 

fit to the nonzero data) included winter temperature range, 
intrinsic potential, percent agriculture, percent private non- 
industrial forests, and percent nonforested area. Many of 
these same landscape predictors occurred in the best models 
from the index reach data reported in Firman et al. (2011). 
Parallel findings may arise because the index-reach model 
describes only hand-picked reaches that are unlikely to have 
observations of zero spawners. By focusing on consistent pat- 
terns of coho salmon abundance across occupied sites, we 
are able to identify some of the dynamics controlling the 

freshwater portion of the salmonid lifecycle. 
Our models built with the Oregon Plan data set are the 

first landscape-scale models to explore the correlation be- 
tween intrinsic potential, as defined by Burnett et al. (2007), 
and coho salmon abundance. The concept of intrinsic poten- 
tial is based on an assumption that there is a range of stream 
gradient, stream constraint, and mean annual flow that are 
ideal for supporting coho salmon. These features are often 
easy to calculate or estimate from remotely sensed data, and 
so determining how well this combination of variables can 
predict fish abundance is of great interest. Intrinsic potential 
was a significant predictor in every model in the best set of 

abundance models, and we therefore conclude that it is useful 
for helping identify those reaches that, if fish are present, are 
likely to support a large number of fish. 

While some ecologists and statisticians have focused on 
the year-to-year variation in spawner abundance, our variance 
partitioning results for the Oregon Plan data set as well as for 
the Firman et al. (2011) and Pess et al. (2002) data sets sug- 

gest that a larger component of the variation in spawner 
abundance occurs between reaches than between years. That 
year-to-year variance appears highest in the shortest data set 
supports the conclusion of Wiley et al. (t997), who deter- 
mined that very long time series may be required (~10 gen- 
erations for trout in Michigan streams) to stabilize the 
variance estimates of mean fish density. Differences in year- 
to-year variance across studies may also result from differen- 
ces in fish behavior, the metric recorded, and the range of 

years surveyed. The year-to-year variation is driven by chang- 
ing ocean conditions, population cycles, and changes in feed- 
ing opportunities. Of course, landscape characteristics are not 
the sole means by which we hope to explain all coho salmon 

population performance. However, our results, especially in 
combination with previous studies (Pess et al. 2002; Steel et 
al. 2010; Firman et al. 2011), indicate that landscape charac- 
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Table 2. Comparison of variance across the three adult coho salmon data sets. 

Reach Sample Estimated 
Data set Location selection size Years O’reach2 O, vear2 

O.residual2 Cr2~cachlcr~siaua~ max. R2 

Oregon Plan Oregon Coast, Randomly Nreac~l~s = 95 1998-2006 0.91 0.61 0.75 1.2 0.55 

Ore. selected Ny .... = 9 

Firman et al. Oregon Coast, Index greaches = 44 1981-1997 0.42 0.10 0.53 0.79 0.44 

2011 Ore. Nycar~ = 17 

Pess et al. Snohomish Index Nreaches = 54 1984-1998 2.0 0,4 2.4 0.84 0.46 

2002 River, Wash. Nyears = 15 

Note: Reach variance 2 ’: ~" ¯ ’ ~ 
(Crre~u) describes the amount of variance between reaches, and a~.~ describes variation between years. Maximum Ra (Kauffmann et 

al. 1999) is an estimate of maximum model strengtb for a simple regression model explaining observations across reaches given the residual variation. 

Table 3. Classification results from singlezyearlogistic models to explain reach-level presence vs. absence of coho salmon spawners. 

Observed 

Proportion correctly 
Year Predicted 0 + classified (0 vs. +) 

1998 0 14 2 0.48 0.79 
+ 15 49 0.96 

1999 0 5 3 0.28 0,81 
+ 13 63 0.95 

2000 0 6 2 0.38 0,86 
+ 10 67 0.97 

2001 0 4 1 0.58                               0,96 
+ 2 71 0.99 

2002 0 3 1 0.75 0.98 
+ 1 85 0.99 

2004 0 1 2 001~ 0.87 

+ 9 74 0.97 
2005 0 1 1 0.~7 0.92 

+ 5 7o 0.99 

2006 0 2 Q 0.25. 0.9.3 
+ 6 76 1.0 

Proportion correctly 
classified overall Landscape predictors 

AnnualRange, CowDensity, Precip 

Mafic, Public, Resistant 

CowDensity, Flow, BLM 

Landslide, Precip, AnnualRange 

CowDensity, Flow, Unconsolidated 

Renmant, SmallTrees, Cut 

AnnualRange, Elevation, CowDensity 

~onForest, Roads 

-~ , ’, ...... i. ~,-r~’~-~=~ .... ,~--.-~------~v~’-~.. 
Note: Counts are of stream reaches with zero spawners (0) and at least one spawner (+) in each year. The proportion of reaches correctly classified 

and the predictive power are provided for reaches with zero spawners (bold; specificity) and with at least one spawner (nonbold text; sensitivity). The 
overall proportion of correctly classified reaches includes reaches with zero spawners and reaches with spawners. Landscape predictors ,are defined in 
Table 1. There is no model for 2003 because spawners were observed in all reaches surveyed that y~ar. 

Table 4. Results of mixed modeling for coho salmon density (spawners per kilometre) using reaches from the Oregon Plan 
data set where spawners were present. 

Model 

-0.0776 x Ag + 0.796 x IntPotential + 0.0216 x WinTRange 
1.681 - 0.215 X Ag + 0.00918 x Ag2 + 0.842 x IntPotential 
--0.0310 x NonForest + 0.0216 x WinTRange + 0.823 x IntPotential 
-0.0173 x PrivateNI + 0.0231 x WinTRange + 0.772 x lntPotential 

R2 AIC AIC weight 

0.303 1603.0 0.438 
0.306 1604.6 0.192 
0.289 1604.6 0.191 
0.287 1604.8 0.178 

Note: AIC weights indicate the relative strength of the models and enable model users t~ apply ’ a weighted average of the predictions 
from the best models. Landscape predictors are defined in Table 1. 

teristics, and in particular anthropogenic impacts, can influ- 
ence the abundance of coho salmon spawners. 

Our landscape models built using the Oregon Plan data 

set, though informative, were not as strong as previously pub- 
lished analyses based on index data. When the data were an- 
alyzed using the same techniques as Pess et al. (2002), o.o 
significant relationships were detected. At first, we found 

this surprising because we expected that .a large~.p~9,babilisti: 
cally sampled data set would yield models that were both 
more accurate and more precise than a smaller index data 
set. There are several potential explanations for the lack of 
model fit. First, the Oregon Plan data were collected over a 
large area lacking strong gradients in geological characteris- 

tics, climate, or land use. If the study region had encom- 
passed highly urbanized areas and a range of geologies, we 
might have been better able to detect the influence of land- 

scape features on coho salmon abundance. Note that Firman 
et al. (2011) found stronger models over this same geo- 

graphic area using o~ly opportunistically sampled index 
reaches. ~econd, the probabilistic nature of the sample meant 

that we ~,urveyed a~wic~range of coh0 salmon habitat suit- 
ability. All reaches in the Oregon Plan data set can be con- 

sidered coho salmon spawning streams because spawners 
were observed in at least 1 year; however, many reaches 
were ~nly occupied in some years. The index reaches used 
in previous modeling of coho salmon (Pess et al. 2002; Fir- 
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Table 5. Comparison of landscape models across three adult coho salmon data sets. 

Oregon Plan data set 
Data set (abundance only) Firman data set 

Model fitting procedure Mixed model Mixed model 

Strongest predictors Ag Roads 

IntPotential NonForest 

WinTRange Privatelnd 

NonForest WJnTRange 

Pri~ateNI Weak 

Hardwoods 

Model Fit 0.30 0.43 

Pess data set 

Hierarchical linear model 
%agriculture 
%till 
%bedrock 
%urban 

<0-0.41" 

Note: The results from data sets of Firman et al. (2011) and Pess et al. (2002) describe watershed-scale analyses. Results 
from Firman et al. (201 I) combine both of their large-scale analyses (hydrologic nnit and watershed). Model fit was esti- 
mated as the average model fit across the set of best models. The range of R2 reported l~or hierarchical linear models from 
Pess et al. (2002) is the adjusted R2 across years; those reported for mixed models are generalized R2 (Nagelkerke 1991). 
For d.efinitions of predictors in the Pess data set, see Pess et al. 2002. Landscape predictors lbr the Oregon Plan data set 
and the Firman et al. (2011) data set are defined in Table 1. 

*Estimated from data in figure 5 of Pess et al. (2002). 

man et at. 2011) tended to represent the most suitable areas, 

originally selected to monitor particular areas where large 
numbers of fish were known to occur. These index data are 
known to provide biased estimates of population performance 

(Courbois et at. 2008). 
Several other factors could have reduced performance of 

our coho salmon abundance models, including metapopula- 
tion dynamics and missing variables. Salmon abundances 
might not be correlated with current habitat or landscape 
characteristics when metapopulation dynamics support popu- 
lations in low-quality habitats (Cooper and Mangel 1999). 

Our analysis covers such a large area that substantial straying 

of fish into the study reaches from outside the entire study 
area is unlikely; however, straying among streams and 
reaches within the study area could cloud relationships be- 
tween coho salmon abundance and landscape characteristics. 
In addition, there may be other variables, for example, land- 
scape characteristics that drive the distribution of off-channel 

habitat that were not included in our analysis and that might 
have improved model performance. 

Understanding coho salmon occupancy 

We were not able to detect a strong or consistent relation- 
ship between landscape characteristics and coho salmon oc- 

cupancy, suggesting that occupancy and abundance may be 
driven by different factors. Our prediction errors may be 

based on limitations of the data collection methods or the 
statistical model (algorithmic errors) or on processes deriving 
from the ecology of the study subject (biotic errors) (Fielding 

and Bell 1997). Given that we have multiple years of ran- 
domly selected observations across a broad spatial extent, we 

assume that at least some, if not most, of our errors are biotic 
errors. 

Our logistic models failed to properly classify occupied 

and unoccupied reaches. Over the 8 modeled years, we ob- 
served 16 different potential predictors with no one predictor 
observed in more than 50% of the models. Although we can- 

not consider each year an independent analysis, the relatively 

consistent failures suggest a more general phenomenon than 

if we had only modeled data from 1 or 2 years. Because 
there was no consistency in landscape predictors across 
years, we did not go further and develop a mixed model that 

incorporated temporal covariance. Instead, we spent our ana- 
lytical energy attempting to find a modeling structure that 

might improve performance in some years or explain per- 
formance across years. We also explored additional potential 
predictor variables to find a landscape-scale feature with 
some ability to predict whether coho salmon would occupy a 
particular reach in a particular year. 

We considered whether there might be a density-dependent 
relationship between patterns of occupancy and the number 

of returning spawners. We might expect such an eft~ct if, for 
example, some reaches were only occupied in years of high 
spawner returns. Isaak and Thurow (2006) were able to dem- 

onstrate changes in occupancy with changes in Chinook sal- 
mon population size in Idaho. Jacobs et at. (2002) suggest a 
similar pattern for Oregon coastal coho salmon. They suggest 

that relationships between index reaches and random reaches 
are not linear because in high population years, the index 

reaches are saturated but there is still room in other less suit- 
able reaches. We do see a range in run sizes in our data such 
that habitat was likely nearly or fully seeded in several years 
of our analysis. Meengs and Lackey (2005) estimated histori- 

cal run sizes for Oregon coastal coho salmon and considered 
in detail tbe relationship between current coho salmon popu- 
lations and available habitat. They concluded that in good 

ocean years, for example 2001-2003, coho salmon popula- 
tions are near the maximum that can be supported with avail- 
able habitat. We therefore would have expected all suitable 
habitats to be occupied either in 2002 when a large number 
of fish returned or by 2003 when the progeny of strong year 

classes began to return. We did see the best model perform- 
ance (specificity) in 2001 and in 2002. Population size may 
provide a partial explanation, but the data do not support a 

simple relationship in which one type of reach is consistently 
unoccupied in years of lower returns. 

Many unmeasured factors might improve our understand- 

ing of occupancy in the future. We were unable to model 

reach selection dynamics of individual fish, such as attraction 

of arriving fish to established territories or the order by 
which spawning habitats are filled. If such dynamics are un- 

related to landscape characteristics, they might improve 
model fit. Individual variability in habitat selection can cer- 
tainly lead to poor models linking habitat to presence vs. ab- 
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sence dynamics (Fielding and Bell 1997). Spatial correlation 
between sites may also obscure observed correlations. 

An enhanced conceptual model of coho salmon spawning 
and implications for future research and monitoring 

Landscape characteristics are correlated with spawner 
abundance in good reaches (e.g., index reaches) and within 
occupied reaches. Landscape models have successfully identi- 
fied correlations between landscape characteristics and 
spawner abundances for multiple species (e.g., Feist et al. 
2003; Steel et al. 2004; Bilby and Mollot 2008) across a 

range of good habitat. Our results suggest that there is an ad- 
ditional process driving occupancy that cannot be explained 
by the landscape predictors used in this study. We suggest 
that a complete conceptual model of coho salmon spawning 
distribution should include both (i) a mechanism explaining 
why any salmon are present in a particular reach and in a 
particular year, and (ii) the suite of factors, including 
landscape-scale conditions, that explain how many salmon 
are present in occupied sites. A better understanding of occu- 
pancy will be useful for developing a full understanding of 
the drivers of spatial structure and the relationship between 

spatial structure and population performance. 

In our study area, we propose that there is an as yet unex- 
plained process by which perfectly good reaches remain un- 
occupied in some years. Alternatively, poor reaches may be 
occupied because spawners happen to stray into them. This 
random process may be driven by population size, local flow 
events during a key migration window, competition, or even 
by small-scale habitat fluctuations, such as gravel movements 
that impede or open particular reaches in particular years. As 

far as we know, this is the first multiyear, probabilistically 
sampled data set covering such a large spatial extent. Without 
similar data sets in other regions, we cannot determine 
whether there might be landscape-scale drivers of occupancy 
in other regions or for other species. A take-home message of 
our study is that these kinds of data need to be collected over 
many areas and for all species of concern. Unbiased data 
from the full range of potential habitats is necessary to en- 
sure that species management plans and actions are based on 
a complete understanding of species-habitat relationships. 

A better understanding of occupancy will eventually re- 
quire studies in multiple locations. Ideal locations in which 
to study occupancy might include newly opened habitat in 

close proximity to healthy poPulations, areas with increasing 
coho salmon populations, and locations with particularly dy- 
namic habitat conditions. Further, research on moderately 

suitable and rarely occupied reaches will also be essential to 
untangle these relationships. We encourage the development 
of data-gathering programs to test whether these same pat- 
terns occur in other species of salmonids, in regions that 
have a completely different topography, and in areas where 

landscape predictors have an even stronger relationship with 
abundance. 

Probabilistically sampled spawner surveys are ideal for ex- 

ploring relationships between fish and landscapes that can be 

extrapolated to the full population of potential reaches. We 
have long been aware that index reaches cannot be used to 

provide unbiased estimates of population performance trends 

(Thurow 2000; Jacobs et al. 2002). Our results further dem- 
onstrate that index reaches provide a biased perspective of 

landscape-scale human impacts on fish populations. They 
may provide information about coho salmon abundance in 
occupied reaches, but they provide little insight on occupancy 
or spatial structure. 

A great deal of research has gone into designing the spa- 
tially balanced, probabilistic sampling scheme that generated 
the Oregon Plan data set (e.g., Stevens 2002; Stevens and O1- 
sen 2004). Using a simulation study, Courbois et al. (2008) 

demonstrated that the generalized random-tessellation strati- 
fied design used to collect this data set is increasingly accu- 

rate at larger population sizes when only 5%-10% of the 
population can be surveyed. Our results suggest that modifi- 
cations of random designs to collect further data about occu- 
pied reaches might provide useful information. Adaptive 

cluster sampling, for example, is one possible approach 
(Thompson 1990). Other slight modifications might be par- 

ticularly useful for depressed or declining populations. For 
these populations, increased sampling effort to distinguish 

occupied from unoccupied reaches could yield ecological in- 
sights that have the potential to improve management. Future 
research to identify those human impacts that limit occu- 

pancy of threatened and endangered species could enable 

small on:the-ground changes that increase connectivity be- 
tween populations, improve spatial structure, and increase 
population growth rates and (or) resilience. 
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