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Abstract 

Using a variable probability sampling design, streams throughout the entire range of 

Great Basin redband trout (Oncorhynchus mykiss ssp.) were randomly sampled use the EMAP 

sampling protocol, such that 35 sample sites were apportioned to each of six subbasins (Silver 

Lake, Lake Abert, Goose Lake, Warner Valley, Catlow Valley, and Malheur Lakes).  A total of 

185 sites (out of a target of 210) were visited by three-person crews that conducted habitat 

surveys and population estimates in sample reaches whose length were nearly 20 times their 

channel width.  A minimal sampling intensity was based on previously encountered levels of 

between site variance in abundance estimates for the species.  The population estimate for age 1+ 

redband trout was 948,852 fish (+/– 21%), with confidence limits ranging from 26% to 43% of 

individual subbasin estimates.  Age 1+ fish abundance in terms of density (fish m-2) showed no 

significant differences between any subbasin, while there were significant differences in biomass 

(g m-2), where one subbasin had significantly higher (Catlow Valley) biomasses, and one 

significantly lower (Goose Lake).  These comparisons were supported by like differences in 

mean weight (g fish-2).  Analysis of stream habitat characteristics and fish abundance revealed no 

relationship, or model, that was generally consistent throughout the Great Basin, though 

interpretable patterns were evident within some stream systems where sampling intensity 

happened to be sufficiently high.  Thus while a landscape level sampling design was well suited 

to address a regional estimate of abundance, useful interpretation of fish and habitat relationships 

appeared to be embedded within the stream level of organization, and could not be addressed by 

the variable probability sampling design set for a minimal sampling intensity. 

 

Introduction 

Redband trout (Oncorhynchus mykiss ssp.) occur in inland drainages of the Pacific 

Northwest.  Currens (1997) suggests that separate groups of redband trout evolved in large river 

systems, such as the Columbia, Deschutes, Klamath and Sacramento Rivers.  Great Basin 

populations of redband trout (Figure 1) persist in fragmented habitats in basin-and-range geology 

that are peripheral to, and isolated from, riverine core groups, and likely constitute unique 

evolutionary lineages.  Populations connected to perennial lake systems have evolved adfluvial 

life histories.  These populations may have adaptations to unique habitats, and their importance 

as units of conservation could likely equal or exceed those from large riverine cores (Li et al. 

1995). 
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Great Basin populations of redband trout are in arid forest and desert environments 

characterized by extreme fluctuations in stream flow and temperature.  Information collected 

after droughts in 1992 and 1994 suggested that some populations had depressed abundance.  A 

1997 petition to list Great Basin redband trout as a threatened or endangered species prompted a 

population status review by the US Fish and Wildlife Service in 1998.  Redband trout have little 

commercial value, and historically have supported only a small sport fishery.  Hence they have 

attracted less attention from managers, have not been well researched, nor has their status been 

sufficiently documented compared to other salmonids in the Pacific Northwest.  And while the 

distribution of Great Basin redband trout was generally known (Flitcroft and Dambacher 1999), 

particularly lacking were 1) reliable estimates of population abundance, and 2) an understanding 

of critical habitat.  The objective of this study was to help fill these information gaps. 

While population estimates of fishes throughout entire stream systems have effectively 

been carried out by systematic random sampling of habitat units (Hankin and Reeves 1988), this 

technique requires a complete a priori census of stream habitat in a basin.  Where this is 

impractical, as in landscape level survey across many basins, a variable probability sample 

 
Figure 1.  Six subbasins with Great Basin redband trout;
SL: Silver Lake, LA: Lake Abert, GL: Goose Lake, WV:
Warner Valley, CV: Catlow Valley, and ML: Malheur
Lakes. 
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design (Horvitz and Thompson 1952, Stehman and Overton 1994) can be used, provided sample 

sites are randomly selected.  If sample sites are also spatially dispersed then surveys and analyses 

can yield additional benefits, such as variable sampling intensity and a posteriori stratification 

(personal communication, Don Stevens, Dynamac Corporation, Corvallis, Oreg.).  Such surveys 

are currently being conducted  by the U.S. Environmental Protection Agency, under the so-called 

Environmental Monitoring and Assessment Program (EMAP) (Stehman and Overton 1994).  

Stream population estimates from both the Hankin and Reeves and EMAP surveys can be based 

upon a two-stage sample design, from which arise two sources of variance.  First stage variance 

comes from extrapolating the subsample into the entire strata, and is minimized when individuals 

in a population are evenly distributed with respect to sampled units.  Second stage variance is 

derived from the relative precision of the sampling method (here electroshocking).  It is typically 

a minor component of the total variance in salmonid population estimates. 

Models that predict fish abundance and production based on habitat parameters implicitly 

assume a deterministic relationship between fish and their physical environment.  Such models 

are typically based on either regression analyses, or a limiting factors approach.  While some 

regression-based models have been highly predictive (R2 = 50 – 96 %) in the areas from which 

they were developed, their generality appears limited (R2 < 30 %) when applied elsewhere 

without recalibration (Shirvell 1989).  Limiting factor type models are applied with the implicit 

assumption that included variables are of general importance.  Where the status of a particular 

population is poorly predicted, it is implied that the population is limited by variables not 

included in the model. 

 

Methods 

Sample Design and Access.—Stream sample sites were selected according to the EMAP 

sample design, which uses GIS to partition stream networks into discrete reaches with a hexagon 

grid (Stehman and Overton 1994).  Stream reaches are then arranged along a single line in a 

hierarchically randomized order that is systematically sampled in a recursive-partition-based 

manner.  A single reference point is then placed within each selected reach to designate, by 

latitude and longitude, a specific sample site location.  Consequently, all sample sites are 

spatially dispersed within the sample strata.  This spatial dispersion is convenient for a number of 

reasons, including a posteriori stratification and application of hierarchically nested sets of 

sample draws.  Sample draws can be both temporally and spatially nested to create a rotating 
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monitoring schedule that incorporates both repeat and novel sample sites, or to create a survey 

that addresses objectives at multiple spatial scales.  The objective of this study, however, was 

quite simple and involved only a one-time estimate of redband trout in the Great Basin, though it 

designed and anticipated that it will serve as a baseline for future monitoring. 

The sampling universe for this study was based upon 1:100,000 scale digital line graphs 

of the known distribution of redband trout in Great Basin streams of Oregon, Nevada, and 

California (Flitcroft and Dambacher 1999, Figure 2).  The goal of sampling was to obtain 95% 

confidence intervals that were less than +/- 50% of population estimates for age 1+ redband trout 

in each of six subbasins (Silver Lake, Abert Lake, Goose Lake, Warner Valley, Catlow Valley, 

and Malheur Lakes).  A minimal sampling intensity of 35 sites per subbasin was chosen, hence 

210 for the entire Great Basin, based on previously encountered levels of between-site variance 

in abundance estimates of age 1+ Great Basin redband trout (CV as high as 150%, unpublished 

data JMD).  Two independent sample draws were taken in anticipation of a need for replacement 

sites in the event of access refusal by private landowners.  To encourage the granting of access to 

privately owned lands we sought the support of our research objectives by the County 

Commissioners for Lake and Harney Counties, Oregon.  Their signatured endorsement was 

included in access request letters that were mailed to all owners of private lands selected in the 

two sample draws. 

Deviations from Protocol and Sample Bias.—Two EMAP sampling protocols were not 

followed in this study.  Normally, EMAP protocol calls for factoring into the selection of 

samples an anticipated proportion of sites that are either inaccessible sites, or outside the 

distribution of a target.  This protocol create an intentional ‘over sampling’ of sites, from which 

the effort is made to access all sites equally.  After sampling, the fraction of sites occupied by a 

species is then used to calculate its distribution (aerially or linear as the case may be).   If 

inaccessible sites occur randomly throughout the spread of sampled sites, then sample bias is 

minimized.  We did not, however, follow either of these protocols since we could not commit to 

an over sampling of sites due to labor limitations.  In addition, while we knew general 

proportions of ownership categories in the Great Basin, we could not anticipate the varying 

degree of accessibility within each subbasin.  However, we had a relatively precise and up-to-

date map of the stream distribution of redband trout from which to work (Flitcroft and 

Dambacher 1999, Figure 2). 
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Figure 2a. Sites selected and sampled, from first and
second sample draws within the documented distribution
of Great Basin redband trout in streams of the Silver
Lake (SL), Lake Abert (LA), and Goose Lake (GL)
basins.  Lakes and wetlands denoted by shaded regions. 
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Figure 2b. Sites selected and sampled, from first and second
sample draws within the documented distribution of Great Basin
redband trout in streams of the Warner Valley (WV), Catlow
Valley (CV), and Malheur Lakes (ML) basins.  Lakes and wetlands
denoted by shaded regions. 
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           By use of replacement sites from a second sample draw, we introduced an element of bias 

into the sample, the magnitude of which is unknowable.  We sought to minimize this bias by 

selecting replacement sites that were judged to be of similar location, land use, stream size, and 

elevation (Figure 2).  To identify the potential for bias in our data, we developed an index based 

upon the proportion of target sites from the first sample draw that were not sampled, where 

 

potential bias = 1 – (number of 1st sample draw sites visited / number of target sites) .   (1) 

 

Site Location.—Sample site reference points were located in the field by use of handheld 

GPS units.  Due to error in the electronic base maps, and random error of GPS units, reference 

point locations could be as much as 100 m from a stream channel, and therefore the nearest 

portion of stream channel was chosen as an adjusted reference point for each sample site.  

Stream sample sites were 30 times the active channel width, and were enclosed by blocknets (6 

mm mesh) set in fast-water habitat units.  Care was taken not to scare or herd fish in or out of the 

sample area during site selection and placement of blocknets. 

Fish Population Estimates.–Depletion-removal estimates (Zippin 1958) were made using 

backpack electroshockers in wadable streams, and a raft mounted electroshocker in channels too 

deep to wade.  After two removal passes, the decision to cease or proceed with an additional 

sampling pass was made by the criterion of having attained at least a 50% reduction in age 1+ 

redband trout between successive passes.  While this criterion targeted only numbers of captured 

age 1+ redband trout, equal effort was made to collect age 0 redband trout and all other species 

as well.  Each sampling pass started at the downstream blocknet, and proceeded systematically 

upstream.  Anode probes where activated in discrete sections of the channel so as not to herd fish 

by pushing activated probes through the sample area.  Stunned fish were collected by dip nets 

and held in buckets of stream water.  Upon reaching the upstream block net, the pass was 

continued back towards the lower block net, with approximately ¼ of upstream effort, but this 

time by pushing the activated probe downstream so as to herd fish to the lower block net.  These 

two separate efforts constituted a single ‘pass’.  Captured fish were identified by species and 

apparent age-class, and their lengths measured to the nearest mm, and weights to the nearest 0.1 

g.  Length-frequency analysis was later used to categorize redband trout as either age 0 and age 

1+ (i.e. ≥ age 1) fish.  Separate age-class designations were made in each of the six subbasins.  
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These designations were putative, and uncorroborated by scale or otolith analysis.  Population 

estimates of other species were made without distinction of size or age. 

Habitat Assessment.—Stream habitat of sample sites was characterized by 27 variables at 

the reach and habitat unit level (Appendix Table A).  In general, descriptions were recorded for 

channel dimension, streambed composition, amount of large woody debris, and riparian 

characteristics, according to ODFW stream survey protocol (Moore et al. 2000).  Stream habitat 

was surveyed within the sample site, and upstream to a distance that included 30 habitat units, 

which from analyses of previous surveys has been shown to provide a robust characterization of 

habitat at a reach level.  Habitat data was separately summarized for the sample site, and for the 

30 units combined.  Additional reach and watershed level variables (Appendix Table A) were 

obtained from GIS analyses of digital line graphs and elevation models. 

Data Analysis.—Fish population estimates were made by extrapolating average fish m-1 

in sample sites to total length of stream channel occupied in each subbasin.  This was done 

through a weighting factor that scaled the relative contribution of each sample site to the total 

subbasin estimate.  Total stream distance in each basin was based on analysis of 1:100,000 scale 

digital line graphs of their known distribution (Flitcroft and Dambacher 1999). 

Log transformed abundance measures of redband trout was compared among subbasins 

using both parametric analysis of means, and nonparametric analysis of ranked medians.  Habitat 

data was transformed, or relativized, by division of each xij datum by the sum of each xj data 

column, whereby  

xij
relativized = xij / Σ xj .                                                          (2) 

 

Habitat and abundance relationships were analyzed by various multivariate techniques, 

including multiple linear regression, regression tree analysis, nonmetric multidimensional 

scaling, and discriminant function analysis, using both raw and relativized data. 

 

Results 

Access, Map Accuracy, and Potential for Sample Bias.–There were 185 sites, out of the 

adjusted total of 205 target sites, that were visited by survey crews, in which fish population and 

stream habitat data was collected (Table 1, Figure 2).  In the Malheur Lakes subbasin, mainstem 

habitat that was misidentified as being within the year-round distribution of redband trout was 

reclassified as migration corridor.  This resulted in five sites being dropped from the initial target 
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of 210 sites, and an adjustment to the distribution distance within the Malheur Lakes subbasin 

(Figure 2b, see sites labeled as ‘first draw, not sampled’ which do not overlay redband trout 

stream segments in north half of Malheur Lakes subbasin). 

 

 

Table 1. Distance of known stream distribution of Great Basin redband trout, as 
calculated from 1:100,000 scale digital line graph map, with sample draws of 205 sites 
visited by field crews for sampling in summer 1999, average sample site dimension, and 
proportion of total stream length sampled (for fish population estimates).  There were 35 
sites targeted in each of the subbasins, except as noted†.  Potential (pot.) bias of sample 
calculated as proportion of target sites in 1st sample draw that were not visited (Eq. 1). 

Subbasin 

Redband trout 
distribution 

distance (km) and 
percent of total 

Sites visited from 
sample draws: 

 1st  2nd  total  pot. bias

(m) 
Mean sample: 
length  width 

Percent 
stream 

distance 
sampled 

Silver Lake 97  4.5%  25    5   30      0.28 82        4.3   2.5% 

Lake Abert 314   15%  26    9   35      0.26 72        4.2   0.80% 

Goose Lake 303   14%  28    7   35      0.20 71        2.8   0.81% 

Warner Valley 269   12%  14  10   24      0.60 92        4.1   0.82% 

Catlow Valley 69  3.2%  33    0   33      0.06 78        2.7   3.7% 

Malheur Lakes 1,115   52%  18  10   28†     0.40 92        3.7   0.23% 

Total 2,167  144  41 185      0.36‡ 80        3.6   0.68% 

†: Mainstem habitat withdrawn from ‘known’ distribution map resulted in dropping 5 
sample sites, leaving an adjusted target of 30 sites for Malheur Lakes subbasin. 

‡: Weighted to percent of total stream distance within each subbasin. 
 

 

There were 41 sites included in the sample that were selected from the second sample 

draw as replacements for lack of access or errors in the distribution map.  Access was granted to 

about half of the 90 private land sites in the first sample draw.  Ten headwater sites were either 

dry or outside of the distribution of redband trout.  These sites were omitted from the survey and 

replaced with sites from the second sample draw.  We considered the likelihood of errors around 

the headwater distribution limit to vary equally both upstream and downstream, and therefore we 

did not adjust the map distribution distance of redband trout in subbasins where these sites 

occurred. 
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Access to private lands was particularly difficult to obtain in the Warner Valley basin, 

and there were insufficient replacement sites available, such that sampling was done in only 24 

(68%) of the 35 target sites (Table 1).  The potential for bias was most severe in this basin (0.60), 

as access was refused over large contiguous blocks of land in the lower portions of the basin 

(Figure 2b).  Catlow Valley had the least potential for bias (0.06).  The potential for bias for the 

entire sample of all subbasins combined is weighted towards subbasins with greater stream 

distance.  Since the Malheur Lakes subbasin had the majority (52%) of stream habitat, it had the 

largest proportional influence on the total potential bias of the entire data set (0.36). 

Relative Sampling Intensity.—The length of stream sampled for fish population estimates 

at each site was on average 80 m, which was roughly 20 times the wetted channel width (Table 

1).  Initial survey protocol called for a stream sample length that was 30 times the active channel 

width.  This was relaxed at the discretion of field crews, so that on average, two sites could be 

visited per day; this decision, however, was bounded by the criteria that there be at least two 

pool-riffle sequences within each sampled site.  Overall, 0.68% of the stream distribution of 

Great Basin redband trout was sampled in this study (Table 1).  The greatest sampling intensity 

occurred in the Silver Lake and Catlow Valley subbasins, where 2.5% and 3.7% of the stream 

length was sampled, respectively. 

Population Estimates and Associated Error.— The population estimate for age 1+ Great 

Basin redband trout was about 946,000 fish, with a 95% confidence interval that was +/- 21% of 

the estimate (Table 1).  Population estimates for age 1+ fish in individual subbasins ranged from 

55,000 (+/- 26%) in Catlow Valley subbasin, to 414,000 (+/- 46%) in the Malheur Lakes 

subbasin.  The population of age 0 fish was roughly two-thirds that of the age 1+ population, 

with confidence intervals that were consistently greater (up to 3 times greater in some subbasins) 

than those were for age 1+ fish. 

Redband trout population estimates for each subbasin were extrapolated from estimates 

of fish density (fish m-1) at each sample site.  The coefficient of variation for densities of age 1+ 

fish among sites in each subbasin ranged between 73% and 124%, and averaged 92% among all 

subbasins combined (Table 2).  The coefficient of variation for age 0 densities was roughly twice 

that of age 1+ fish (Table 3).  Stemming from this variation, the greatest source of error in 

population estimates came from extrapolation error (first stage variance).  Sampling error 

(second stage variance) from removal depletion estimates constituted, on average, less than 1%, 

and at most was 6.2%, of the total variance in population estimates for both age 1+ and 0+ fish 
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(Tables 2 and 3).  The catchability (p) of both age classes of redband trout averaged 0.81, though 

was somewhat more variable, in terms of the coefficient of variation (CV), for age 0 fish (Tables 

2 and 3). 

 

 
Table 2.  Age 1+ Great Basin redband trout population estimates with 95% confidence 
limits (CL) expressed as percent of estimate, coefficient of variation (CV) for density 
estimates  among sample sites, sampling error expressed as second stage variance percent 
of total variance, and average catchability from electroshocking removal depletion. 

Subbasin 

Age 1+ redband 
trout population 

estimate (+/– 95% 
CL % of estimate)

CV of density 
(fish m–1) 
estimates 

Sampling error 
as second stage 
variance % of 
total variance 

Average 
catchability 

p    (CV) 
Silver Lake 56,964 (26%) 73%  1.4% 0.76 (17%) 

Lake Abert 147,878 (41%) 124%  0.33% 0.84 (15%) 

Goose Lake 102,352 (32%) 93%  6.2% 0.81 (20%) 

Warner Valley 172,240 (31%) 76%  1.1% 0.80 (19%) 

Catlow Valley 54,866 (33%) 95%  0.13% 0.85 (14%) 

Malheur Lakes 414,551 (43%) 115%  0.35% 0.81 (21%) 

Total 948,852 (21%) 92%  0.56% 0.81 (17%) 

 

 

Table 3.  Age 0 Great Basin redband trout population estimates, with 95% confidence 
limits (CL) expressed as percent of estimate, coefficient of variation (CV) for density 
estimates  among sample sites, sampling error expressed as second stage variance percent 
of total variance, and average catchability from electroshocking removal depletion. 

Subbasin 

Age 0 redband 
trout population 

estimate (+/– 95% 
CL % of estimate) 

CV of density 
(fish m–1) 
estimates 

Sampling error 
as second stage 
variance % of 
total variance 

Average 
catchability 

p    (CV) 
Silver Lake 27,550 (73%) 203% 0.71% 0.73 (34%) 

Lake Abert 28,725 (70%) 212% 0.046% 0.90 (20%) 

Goose Lake 49,880 (67%) 202% 0.083% 0.78 (31%) 

Warner Valley 41,931 (57%) 141% 1.6% 0.75 (36%) 

Catlow Valley 23,012 (58%) 169% 0.045% 0.85 (20%) 

Malheur Lakes 394,492 (52%) 140% 0.0028% 0.79 (19%) 

Total 565,590 (37%) 190% 0.032% 0.81 (25%) 
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Potential and Observed Impact of Sampling.—Approximately 10,000 redband trout, 

about 1% of the total Great Basin population, were captured and handled in this study (Table 4).  

In the smaller subbasins of Catlow Valley and Silver Lake, the proportion handled approached 

3% of the total population estimate.  A total of 258 mortalities (0.017% of total population 

estimate) of redband trout (117 age 0 and 141 age 1+) were observed during the course of 

sampling (Table 4), and these can be attributed to stress or injury from capture and handling.  

 

 

Table 4.  Potential and observed impact of sampling on Great Basin redband trout from 
summer 1999 population survey. 

Subbasin 

Number of fish handled 
 (percent of population estimate†) 

age 0                    age 1+ 

Observed sampling mortality 
(percent of estimate) 

age 0                 age 1+ 
Silver Lake 454   (1.6%) 1,280   (2.2%) 38     (0.14%) 22     (0.039%) 

Lake Abert 234 (0.81%) 1,031 (0.70%) 3   (0.010%) 5   (0.0034%) 

Goose Lake 318 (0.64%) 771 (0.75%) 5   (0.010%) 12     (0.012%) 

Warner Valley 298 (0.71%) 1,328 (0.77%) 30   (0.072%) 30     (0.017%) 

Catlow Valley 657   (2.8%) 1,624   (2.9%) 37     (0.16%) 69       (0.13%) 

Malheur Lakes 817 (0.21%) 927 (0.22%) 4 (0.0010%) 3 (0.00072%) 

Total 2,778 (0.49%) 6,961 (0.73%) 117   (0.021%) 141     (0.015%) 

†: Fish captured and handled were, on average, 92% of the age 0 fish , and 97% of the age 
1+ fish estimated at each sample site. 

 

 

Typically, there were few or no mortalities recorded at a sample site, but on a number of 

occasions, in Silver Lake, Warner Valley, and Catlow Valley specifically, there were a large 

number of fish deaths that occurred at a single sample site.  These deaths were caused by capture 

of large numbers of fish that exceeded the capacity for safe storage in buckets.  In retrospect, this 

could easily have been avoided by dividing the sample unit into smaller subsections, so that 

smaller lots of fish were handled.  This was done elsewhere when it was suspected that large 

sized sites had high fish abundance.   

A high number of mortalities that occurred at a single site in Catlow Valley represent a 

worst-case scenario, as this subbasin had the smallest of any estimated population.  The total 

observed mortality, in proportion to the total Catlow Valley population estimate however, was 
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less than two tenths of one percent.  In the context of the stream system in which it happened 

(Home Creek), it constituted less than one-half of one percent of the total stream population. 

Abundance and Weight of Age 1+ Redband Trout.—Examination of box-and-whisker 

plots of raw data for abundance and weight of age 1+ redband trout (Figure 2), show, in general, 

that most of the six subbasins had similar mean, median, and lower quartile values for numerical 

density (fish m-2), and biomass (g m-2).  Catlow Valley, however, stood out as having a relatively 

high abundance of age 1+ fish.  Moreover, Catlow Valley sites had a high average weight per 

fish, although a few sites in the Lake Abert and Malheur Lakes subbasins exceeded the upper 

range from Catlow Valley. 

Raw measures of abundance and weight in all subbasins were skewed towards higher 

values (Figure 3), and data were log transformed for the purpose of analysis of means (ANOM) 

tests (Figure 4).  This was only partially successful in achieving normal distributions, as for each 

measure of abundance or weight, there were still two or three subbasin groups that remained 

considerably skewed or kurtotic.  In addition, there was unequal variance in the log-transformed 

data for numerical density (fish m-2).  Neither of these departures from analysis of variance 

assumptions are thought to be severe when sample numbers are as large and as even as herein 

(Sokal and Rohlf 1995); we nevertheless chose to supplement the analysis of means comparisons 

with nonparametric tests for differences amongst group medians. 

Analysis of means plots (Figure 4) of log transformed density (log fish m-2) of age 1+ 

redband trout, show none of the subbasins to be significantly different (α = 0.05) from the grand 

mean of the entire Great Basin.  This result is supported by a Kruskil-Wallis test that found no 

significant (p = 0.24) difference amongst any of the group medians.  Catlow Valley had a 

significantly higher biomass, and Goose Lake a significantly lower biomass, and these 

differences were supported by both parametric and nonparametric tests (Figure 4).  Similarly, the 

weight of age 1+ fish was significantly higher in Catlow Valley, and lower in Goose Lake, with 

the significance of these differences also being supported by both parametric and nonparametric 

tests.  Conversely, the significance of difference in weights of fish in Lake Abert and Warner 

Valley, were oppositely supported by parametric and nonparametric tests (Figure 4). 
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Figure 3.  Box-and-whisker plots for age 1+ Great Basin redband trout in terms of a) numerical
density, b) biomass, and c) average weight in each of six subbasins.  Boxes enclose middle 50
percent of data, median vertical line, and subbasin mean (+).  Upper and lower whiskers extend
1.5 interquartile ranges from edge of box.  Points beyond whiskers and within 3 interquartile
ranges are denoted by ‘♦’, those beyond are marked by ‘+’. 
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Figure 4.  Parametric analysis of means plots for comparison of subbasins for age 1+ Great
Basin redband trout in terms of a) numerical density, b) biomass, and c) average weight, with
log transformed data.  Subbasin means (□) significantly different (α = 0.05) from grand mean,
denoted by centerline (CL), are shown by asterices ( ) falling outside of the upper (UDL) and
lower (LDL) decision limits.  Group differences supported by corresponding nonparametric test
(non-overlapping 95% confidence interval of group medians) are circled (  or □). 
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            Abundance Benchmarks.—Interquartile and mean values for redband trout abundance 

measures were separately developed for both age 1+ (Table 5) and age 0 (Table 6) fish.  Each 

measure was adjusted by the relative sample weight of each subbasin to be representative of the 

entire Great Basin. 

Multivariate Analysis of Abundance and Habitat Relationships.—While we sought a 

general habitat-based model that could account for the observed variation in the abundance of 

redband trout, throughout the entire Great Basin, no convincing relationships were forthcoming 

from our analysis.  A multiple linear regression model for log of biomass of age 1+ redband 

trout, produced a highly significant relationship (p < 0.001) with five habitat variables, however, 

it explained only 14% of  between site variation (Table 7).  Separate regression models for 

individual subbasins were also highly significant, and explained substantial portions of variation 

in biomass (up to 68%), yet there was little correspondence among 12 variables included in the 

models, either between subbasins, or in relation to the overall Great Basin model.  Moreover, 

four of the included variables (1/3rd) had opposite effects (signs) within different models (Table 

7). 

Discriminant function analysis produced two highly significant functions that 

discriminated between sites with low, medium, or high biomass (Table 5), based on riparian and 

valley width.  While both functions were significant (p < 0.002), they correctly classified only 

56% of the sites.  Analysis at the subbasin level was less successful, in that significant functions 

were found in only three of the six subbasins.  Moreover, while these functions correctly 

classified 50% to 75% of the sites, there was minimal correspondence between variables 

included in the functions.  Only one variable (valley width) was common between any of the 

models (total Great Basin model and Goose Lake subbasin model), and it had an opposite effect 

upon biomass in the functions that included it. 

Nonmetric multidimensional scaling developed three axes based on habitat variables, 

though  correlations with any measures of fish abundance were vanishing small (i.e. R2 < 1% in 

all axes for all abundance measures).  Use of regression tree analysis also gave significant 

models at the subbasin level, though a general model for the entire Great Basin remained elusive. 

Spatial Patterns of Abundance.—While we found no general model to describe 

differences in abundance among Great Basin sites based on physical habitat variables, there 

were spatial patterns of abundance that were interpretable within individual stream systems 

and subbasins (Figure 5).  In the Silver Lake basin, the biomass of age 1+ redband trout  
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Table 5.  Interquartile, and mean values of age 1+ Great 
Basin redband trout density, biomass, and average 
weight, from summer 1999 stream population surveys, 
adjusted by relative sample weights between each of six 
subbasins. 
Age 1+    25% 50% 75% 
fish m–1 0.11 0.27 0.71 

fish m–2 0.036 0.12 0.22 

g m–1 2.4 7.5 21.4 

g m–2 1.3 3.0 8.7 

mean weight (g) 21.6 31.3 54.7 

 

 

 

 

Table 6.  Interquartile, and mean values of age 0 Great 
Basin redband trout density, biomass, and average 
weight, from summer 1999 stream population surveys, 
adjusted by relative sample weights between each of 
six subbasins. 
Age 0   25% 50% 75% 
fish m–1 0 0.05 0.35 

fish m–2 0 0.02 0.14 

g m–1 0 0.2 0.8 

g m–2 0 0.1 0.3 

mean weight (g) 1.5 2.1 3.1 
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Table 7.  Multiple linear regression models of relativized stream habitat variables (Eq. 2) 
associated with biomass ( log g m–2) of age 1+ redband trout, for the entire Great Basin, and each 
of six subbasins.  All parameters (habitat variables) listed below were significant (p < 0.05) within 
the linear models, and are arranged in descending frequency. 

 
Great 
Basin 

Silver 
Lake 

Lake 
Abert 

Goose 
Lake 

Warner 
Valley 

Catlow 
Valley 

Malheur 
Lakes 

Model p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.007 <0.006 

Adjusted R2 13.8 60.5 48.2 26.8 68.3 18.6 28.6 

Model parameters (β)        
β0: intercept constant 1.94 5.73 –5.32 1.28 –0.831 13.0 –4.96 

βi: conductivity   161  341 298  

riffle gravel –71.0 –169      

residual pool depth† –65.6 295      

distance from divide† 55.2    –284   

riffle fines –87.6      –96.2 

riparian width† 41.8    –29.2   

elevation†  –818     1290 

wetted width  –145      

substrate diversity   759     

percent undercut   180     

valley width index    –140    

riffle depth     216   

†: Model parameter (βi) with opposite sign or effect within different models. 
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Figure 5a. Biomass of age 1+ Great Basin redband
trout in sample sites from Silver Lake (SL), Lake
Abert  (LA), and Goose Lake  (GL)  subbasins, from
summer 1999 sampling.  Lakes and wetlands
denoted by shaded regions. 
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Figure 5b (continued). Biomass of age 1+ Great Basin redband trout
in sample sites from Warner Valley (WV), Catlow Valley (CV), and
Malheur Lakes (ML) subbasins, from summer 1999 sampling.
Lakes and wetlands denoted by shaded regions. 
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   : moderate  1.3 – 8.7 
 : low          < 1.3
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appeared to increase in a downstream direction.  This spatial pattern was supported by 

multivariate analysis; two variables with the greatest effect, elevation (β = –818) and pool 

depth (β = 295), have obvious spatial correlations along streams.  In the Catlow Valley 

subbasin, Rock Creek (the only stream on the west side of the basin) had some of the highest 

recorded biomass among any of the sample sites visited, while streams on the east side of the 

basin (Home, Three Mile, and Skull Creeks) generally had low to moderate biomass of age 

1+ redband trout.  All streams in the Catlow Valley subbasin dominated by spring-flow, but 

Rock Creek in particular has significant contributions from thermal springs, and 

consequently high conductivity.  Here the pattern is supported by multivariate analysis, 

where the only variable of importance was conductivity (β = 298).  Surveys of the three east-

side streams in 1995 identified reaches receiving spring flow, and canyon reaches as having 

the highest abundance of age 1+ redband trout (Dambacher and Jones In Press).  Our 1999 

sampling repeated this pattern, which can be seen in the high versus moderate and low 

biomass sites in Figure 5b. 

While spatial patterns in the abundance of age 1+ redband trout were interpretable 

within stream systems of east side of the Catlow Valley and the Silver Lake subbasins, and 

also between streams of the east and west side of Catlow Valley subbasin, these 

interpretations were supported by relatively high sampling intensities (i.e. at least 2.5% of 

stream length sampled, Table 1).  In the other four basins, sampling intensity appeared to be 

too low (< 1% stream length) to afford a useful interpretation at the stream level of 

organization.  Spatial patterns at the subbasin level of organization, however, were evident in 

the Malheur Lakes subbasin, which had the lowest sampling intensity of any subbasin in this 

study (0.23% stream length).  Sites in the north half of the Malheur Lakes subbasin generally 

had lower biomass of age 1+ fish than sites in the south half.  Here multivariate analysis 

indicates only two significant correlating variables: elevation (β = 1290), and the amount of 

fine sediments in riffles (β = –96.2).  These correlates can be reasonably associated with 

regional differences in geology.  Streams in the south-half of the basin originate in the Steens 

Mountains, which are composed of less friable parent material (principally basalt and 

andesite), than the lower laying north-half of the basin (parent material principally silicic ash-

flow tuff). 
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Discussion 

This study demonstrates the usefulness and effectiveness of the EMAP sampling design 

for population estimates of stream fishes at the basin and landscape scale.  The variable 

probability sampling design proved to be ideally suited to meet the needs of a rapid status review 

for an Endangered Species Act listing decision.  The U.S. Fish and Wildlife Service’s March 

2000 finding of “not warranted” was based primarily upon the results of this study (personal 

communication; Antonio Bentivoglio and Ronald Rhew, U.S. Fish and Wildlife Service, 

Portland, Oreg.).  Relatively precise estimates of population size for Great Basin redband trout 

were obtained in each of the six subbasins (Tables 2 and 3), with a minimal impact to either local 

populations or to the total population (Table 4).  This precision was obtained because we 

accurately anticipated the average between-site variation in densities of redband trout, and set a 

minimal, yet sufficient, sampling intensity that was within the means of limited labor resources.   

Our study objective of obtaining reliable estimates of population abundance were well 

served by the variable probability survey design, however, the objective of obtaining a general 

understanding of critical habitat requirements was not met by a survey design set for a minimal 

sampling intensity.  While this study presents a one-time census of Great Basin redband trout, it 

is intended that is will be useful as a baseline for future monitoring.  The EMAP method is easy 

to repeat in a consistent manner, and future comparisons can be rigorously evaluated.  Similarly, 

the abundance benchmarks (Tables 5 and 6) will also serve as a useful means of comparison for 

smaller scale population estimates of redband trout both within and outside of the Great Basin. 

The decision to departure from standard EMAP protocol in our use of replacement sites 

from a second sample draw, introduced potential bias to estimates of population density and size.  

In doing so, however, a critical level of efficiency was gained that allowed us to more fully 

complete our planned sampling schedule.  Use of the standard EMAP protocol might have 

reduced the potential for bias to some extent, but results would still have been tainted by the 

nonrandomness of where inaccessible sites occurred, namely private land.  This was especially 

critical in the Warner Valley subbasin, where access was denied to roughly 60% of the basin.  

Population estimates from this subbasin will need to be judged with an equivalent proportion of 

caution. 

While our use of a distribution map that was presumed to be accurate decreased the need 

for oversampling, it also introduced an additional element of potential bias in the representation 

of the distribution at headwater fringes.  Headwater sites that lacked redband trout were not used 
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to adjust the distribution distance of the species, as is standard to EMAP protocol.  These 

mapping errors can become cumulatively important if they significantly overestimate the true 

distribution of the species, the distance of which is used to extrapolate to an estimate of total 

population size.  This potential for bias, however, appears to be relatively small as headwater 

map errors accounted for only 10 (5.4%) of the 185 sites visited.  Moreover, these errors were 

likely cancelled by a similar degree of error where the actual distribution of redband trout 

extended beyond mapped limits. 

The March 20, 2000 listing decision of “not warranted” by the USFWS was based upon 

early interpretation of results of this study, which showed Great Basin redband trout densities 

(fish m-2) to be “moderate to high” in each of the six subbasins.  Further analyses, reported 

herein, substantiate that finding but also raise specific concerns and questions.  While 60% of 

sites in the Goose Lake subbasin had moderate or high biomass of age 1+ redband trout (Figure 

5a), the biomass and average weight of age 1+ fish was significantly lower there than in any 

other subbasin, by both parametric and nonparametric comparisons (Figure 4).  Despite 

perceptions that stream habitat conditions for redband trout appear highly degraded by cattle 

grazing in a large portion of the Goose Lake subbasin, the only habitat parameter with a 

significant (negative) association with age 1+ biomass was valley width (Table 7).  And while 

this finding agrees with a general intuition that broad meadow reaches are most sensitive to, and 

impacted from the effects of intensive grazing, we would have expected additional in-channel 

parameters, such as bank erosion, levels of fine sediments, etc., to also have been included in the 

linear model, or for valley width to have been included in other subbasin models, which it was 

not. 

This limitation in the results from the Goose Lake subbasin illustrates a cautionary point 

in our work.  From analysis of our data, it was evident that one could easily put forward various 

plausible interpretations of fish and habitat associations in a given subbasin, by merely picking 

and choosing from various multivariate techniques (the results for all of which are not presented 

herein).  While the habitat based linear models added useful interpretation to some spatial 

patterns of abundance, we do not see these models as being useful in developing a general 

understanding of redband trout ecology in the Great Basin, since there was no correspondence 

amongst subbasin models.  Coinciding with this perspective however, is a more obvious 

interpretation that redband trout are generalists in their use of stream habitat, and various 

countervailing tradeoffs are being resolved within contexts unique to individual streams.  If this 
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is the case, then our understanding of habitat use of stream populations of Great Basin redband 

trout will depend largely upon the story presented by each stream, or group of similar streams.  

Moreover, our results suggest that understanding will likely be gained at various spatial scales 

(i.e. reach, stream, and beyond). 
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Appendix 

Appendix Table A. Dependent and independent variables derived from data collected at 
stream sample sites.  Habitat variables detailed in Moore et al. 2000. 
Variable 
Type 

 
Variable 

 
Description 

Dependent redband trout density fish m-2 
 redband trout biomass g m-2 
 average weight g fish-1 
Independent 
  Biological riparian width total riparian zone width (m) left and right bank 
 percent macrophytes percent surface covered by stream macrophytes 
  Physical   
      Macro maximum elevation maximum elevation of basin (m) 
 elevation elevation at sample site (m) 
 distance from divide distance (km) of site from watershed divide 
 basin area basin area (km2) upslope of sample site 
 channel gradient gradient measured with clinometer 
 valley width index valley floor divided by active channel width 
       Meso percent shade measured with clinometer, percent of 180o that 

topography or vegetation occludes the sky 
 active channel width width (m) of exposed substrate 
 wetted width width (m) of wetted channel 
 percent pool percent of wetted area 
 riffle depth modal depth of riffles (m) 
 percent bank erosion percent distance, left and right bank average 
 percent undercut bank percent distance, left and right bank average 
 Lwd pieces large woody debris pieces 100 m-1 
 Lwd volume large woody debris volume (m3 100 m-1) 
 residual pool depth  mean pool depth minus riffle depth (m) 
 riffle width-depth ratio mean width divided by depth of riffles 
 large boulders 100 m-1 roughness index, for boulders >0.5m diameter 
 percent fines percent of wetted substrate surface area 
 percent gravel percent of wetted substrate surface area 
   percent cobble percent of wetted substrate surface area 
    percent boulder percent of wetted substrate surface area 
 percent bedrock percent of wetted substrate surface area 
 percent riffle gravel percent gravel in riffle substrate 
 percent riffle fines percent fines in riffle substrate 
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